所以我试图使用 LIME 来理解 R 中 logit 模型的预测。我知道我不需要,但我试图说明它对一个可以简单理解为起点的模型的作用一个演讲。
但是我在让这个工作时遇到了麻烦。我确信这是由于 model.predict 方面,但我的几个解决方案没有奏效。
基本上这是我想做的:
model.logit <- glm(formula = formula, data = build.dat, family = binomial(link = "logit"))
train.x <- build.dat[ , all.vars(formula[[3]])]
test.x <- reject.dat[1:100, all.vars(formula[[3]])]
explainer <- lime(train.x, as_classifier(model.logit ), n_bins = 20, quantile_bins = TRUE)
explain.me <- lime::explain(test.x[2 , ], explainer, n_labels = 1, n_features = 8, n_permutations = 5000,
feature_select = "forward_selection", type = "response" )
现在我得到了错误
Error in match.arg(type) :'arg' should be one of “link”, “response”, “terms”
但是在 'lime' 代码中移动我的 'type = "response"' 并不能解决它。
我已经尝试创建一个函数'predict_model.glm',我认为可能会纠正这个问题,因为我在使用randomForest并让它工作时发生了什么:
predict_model.glm <- function(x, newdata, type = "response" ) {
res <- as.data.frame(c(predict(x, newdata = newdata, type = type), 1-predict(x, newdata = newdata, type = type)))
}
但这似乎只会增加错误。
我确信这是因为我错过了“石灰”方面正在寻找的确切内容(因此我无法用“predict_model.glm”函数纠正这个问题),但我似乎无法在任何地方找到澄清。
任何帮助都会很棒,谢谢!