11

我有一组坐标:

d1 <- data_frame(
title = c("base1", "base2", "base3", "base4"),
lat = c(57.3, 58.8, 47.2, 57.8, 65.4, 56.7, 53.3),
long = c(0.4, 3.4, 3.5, 1.2, 1.5, 2.6, 2.7))

我想知道坐标是落在陆地上、在海上还是在海岸线内 3 英里处。坐标应该落在英国的某个地方,所以我知道我需要绘制一个英国的形状文件并将点绘制在上面。

我只是不知道如何测量这些点是落在海中、陆地上还是距离海岸 2 英里。显然,我可以通过查看它们所在的地图来判断,但我想要在我的数据集中添加另一列,使其看起来像这样:

 d2 <- data_frame(
title = c("base1", "base2", "base3", "base4", "base5", "base6", "base7"),
lat = c(57.3, 58.8, 47.2, 57.8, 65.4, 56.7, 53.3),
long = c(0.4, 3.4, 3.5, 1.2, 1.5, 2.6, 2.7),
where = c("land", "land", "sea", "coast", "land", "sea", "coast"))
  • 请注意,d2 列“where”中的数据是说明性的,这些纬度/经度点可能都在陆地上或其他地方
4

4 回答 4

15

可以通过下载openstreetmap海岸线数据来计算到海岸线的距离。然后,您可以使用geosphere::dist2Line来获取从您的点到海岸线的距离。

我注意到您的示例点之一是在法国,因此您可能需要将海岸线数据扩展到英国以外(可以通过使用边界框的范围来完成)。

library(tidyverse)
library(sf)
library(geosphere)
library(osmdata)

#get initial data frame
d1 <- data_frame(
  title = c("base1", "base2", "base3", "base4", 
"base5", "base6", "base7"),
  lat = c(57.3, 58.8, 47.2, 57.8, 65.4, 56.7, 53.3),
  long = c(0.4, 3.4, 3.5, 1.2, 1.5, 2.6, 2.7))

# convert to sf object
d1_sf <- d1 %>% st_as_sf(coords = c('long','lat')) %>% 
st_set_crs(4326)

# get bouding box for osm data download (England) and 
# download coastline data for this area
osm_box <- getbb (place_name = "England") %>%
  opq () %>% 
  add_osm_feature("natural", "coastline") %>% 
  osmdata_sf() 


# use dist2Line from geosphere - only works for WGS84 
#data
dist <- geosphere::dist2Line(p = st_coordinates(d1_sf), 
                         line = 
st_coordinates(osm_box$osm_lines)[,1:2])

#combine initial data with distance to coastline
df <- cbind( d1 %>% rename(y=lat,x=long),dist) %>%
  mutate(miles=distance/1609)


#  title    y   x   distance       lon      lat     miles
#1 base1 57.3 0.4  219066.40 -2.137847 55.91706 136.15065
#2 base2 58.8 3.4  462510.28 -2.137847 55.91706 287.45201
#3 base3 47.2 3.5  351622.34  1.193198 49.96737 218.53470
#4 base4 57.8 1.2  292210.46 -2.137847 55.91706 181.60998
#5 base5 65.4 1.5 1074644.00 -2.143168 55.91830 667.89559
#6 base6 56.7 2.6  287951.93 -1.621963 55.63143 178.96329
#7 base7 53.3 2.7   92480.24  1.651836 52.76027  57.47684



#plot
p <- ggplot() + 
  geom_sf(data=osm_box$osm_lines) +
  geom_sf(data=d1_sf) +
  geom_segment(data=df,aes(x=x,y=y,xend=lon,yend=lat))

在此处输入图像描述

这只是到海岸线的距离。您还需要知道是内陆还是海上。为此,您需要一个单独的海形状文件:http: //openstreetmapdata.com/data/water-polygons并查看您的点的每个点是否位于海中。

#read in osm water polygon data
sea <- read_sf('water_polygons.shp')

#get get water polygons that intersect our points
in_sea <- st_intersects(d1_sf,sea) %>% as.data.frame() 

#join back onto original dataset
df %>% mutate(row = row_number()) %>%
  #join on in_sea data
  left_join(in_sea,by=c('row'='row.id')) %>%
  mutate(in_sea = if_else(is.na(col.id),F,T)) %>%
#categorise into 'sea', 'coast' or 'land'
  mutate(where = case_when(in_sea == T ~ 'Sea',
                           in_sea == F & miles <=3 ~ 'Coast',
                           in_sea == F ~ 'Land'))



# title    y   x   distance       lon      lat     miles row col.id in_sea where
#1 base1 57.3 0.4  219066.40 -2.137847 55.91706 136.15065   1  24193   TRUE   Sea
#2 base2 58.8 3.4  462510.28 -2.137847 55.91706 287.45201   2  24194   TRUE   Sea
#3 base3 47.2 3.5  351622.34  1.193198 49.96737 218.53470   3     NA  FALSE  Land
#4 base4 57.8 1.2  292210.46 -2.137847 55.91706 181.60998   4  24193   TRUE   Sea
#5 base5 65.4 1.5 1074644.00 -2.143168 55.91830 667.89559   5  25417   TRUE   Sea
#6 base6 56.7 2.6  287951.93 -1.621963 55.63143 178.96329   6  24193   TRUE   Sea
#7 base7 53.3 2.7   92480.24  1.651836 52.76027  57.47684   7  24143   TRUE   Sea


ggplot() + 
  geom_sf(data=osm_box$osm_lines) +
  geom_sf(data=d1_sf) +
  geom_segment(data=df,aes(x=x,y=y,xend=lon,yend=lat)) +
  ggrepel::geom_text_repel(data=df, 
aes(x=x,y=y,label=paste0(where,'\n',round(miles,0),'miles')),size=2)

在此处输入图像描述

2018 年 16 月 8 日更新

由于您要求一种专门使用 shapefile 的方法,因此我在这里下载了这个:openstreetmapdata.com/data/coastlines,我将使用它来执行与上述相同的方法。

clines <- read_sf('lines.shp') #path to shapefile

接下来,我创建了一个自定义边界框,以便我们可以减小 shapefile 的大小,只包含合理靠近点的海岸线。

# create bounding box surrounding points 
bbox <- st_bbox(d1_sf) 

# write a function that takes the bbox around our points
# and expands it by a given amount of metres.
expand_bbox <- function(bbox,metres_x,metres_y){
  
  box_centre <- bbox %>% st_as_sfc() %>% 
    st_transform(crs = 32630) %>%
    st_centroid() %>%
    st_transform(crs = 4326) %>%
    st_coordinates()
  
  
  bbox['xmin'] <-  bbox['xmin'] - (metres_x / 6370000) * (180 / pi) / cos(bbox['xmin'] * pi/180)
  bbox['xmax'] <-  bbox['xmax'] + (metres_x / 6370000) * (180 / pi) / cos(bbox['xmax'] * pi/180)
  bbox['ymin'] <-  bbox['ymin'] - (metres_y / 6370000) * (180 / pi)
  bbox['ymax'] <- bbox['ymax'] + (metres_y / 6370000) * (180 / pi)
  

  bbox['xmin'] <- ifelse(bbox['xmin'] < -180, bbox['xmin'] + 360, bbox['xmin'])
  bbox['xmax'] <- ifelse(bbox['xmax'] > 180, bbox['xmax'] - 360, bbox['xmax'])
  bbox['ymin'] <- ifelse(bbox['ymin'] < -90, (bbox['ymin'] + 180)*-1, bbox['ymin'])
  bbox['ymax'] <- ifelse(bbox['ymax'] > 90, (bbox['ymax'] + 180)*-1, bbox['ymax'])
  return(bbox)
}


# expand the bounding box around our points by 300 miles in x and 100 #miles in y direction to make nice shaped box.
bbox <- expand_bbox(bbox,metres_x=1609*200, metres_y=1609*200) %>% st_as_sfc

# get only the parts of the coastline that are within our bounding box
clines2 <- st_intersection(clines,bbox) 

现在我在这里使用了 dist2Line 函数,因为它是准确的,它可以为您提供它正在测量的海岸线上的点,这有助于检查错误。缺点是,对于我们相当大的海岸线文件来说,它非常慢。

运行这个花了我 8 分钟:

dist <- geosphere::dist2Line(p = st_coordinates(d1_sf), 
                                 line = as(clines2,'Spatial'))

#combine initial data with distance to coastline
df <- cbind( d1 %>% rename(y=lat,x=long),dist) %>%
  mutate(miles=distance/1609)

df

 # title    y   x  distance        lon      lat    ID     miles
#1 base1 57.3 0.4 131936.70 -1.7711149 57.46995  4585  81.99919
#2 base2 58.8 3.4  98886.42  4.8461433 59.28235   179  61.45831
#3 base3 47.2 3.5 340563.02  0.3641618 49.43811  4199 211.66129
#4 base4 57.8 1.2 180110.10 -1.7670712 57.50691  4584 111.93915
#5 base5 65.4 1.5 369550.43  6.2494627 62.81381  9424 229.67709
#6 base6 56.7 2.6 274230.37  5.8635346 58.42913 24152 170.43528
#7 base7 53.3 2.7  92480.24  1.6518358 52.76027  4639  57.47684

阴谋:

ggplot() + 
  geom_sf(data=clines2) +
  geom_sf(data=bbox,fill=NA)+
  geom_sf(data=d1_sf) +
  geom_segment(data=df,aes(x=x,y=y,xend=lon,yend=lat))

在此处输入图像描述

如果您不介意精度的轻微损失(结果在您的数据上相差约 0.3%),并且不关心知道它正在测量的海岸线的确切位置,您可以测量到多边形的距离:

# make data into polygons
clines3 <- st_intersection(clines,bbox) %>%
  st_cast('POLYGON')

#use rgeos::gDistance to calculate distance to nearest polygon
#need to change projection (I used UTM30N) to use gDistance
dist2 <- apply(rgeos::gDistance(as(st_transform(d1_sf,32630), 'Spatial'),
                               as(st_transform(clines3,32630),'Spatial'),
                               byid=TRUE),2,min)

df2 <- cbind( d1 %>% rename(y=lat,x=long),dist2) %>%
  mutate(miles=dist2/1609)

df2

#  title    y   x     dist2     miles
#1 base1 57.3 0.4 131917.62  81.98733
#2 base2 58.8 3.4  99049.22  61.55949
#3 base3 47.2 3.5 341015.26 211.94236
#4 base4 57.8 1.2 180101.47 111.93379
#5 base5 65.4 1.5 369950.32 229.92562
#6 base6 56.7 2.6 274750.17 170.75834
#7 base7 53.3 2.7  92580.16  57.53894

相比之下,这仅需 8 秒即可运行!

其余的和上一个答案一样。

于 2018-08-14T13:32:56.813 回答
1

使用ggOceanMaps 包有一种简单的方法可以做到这一点

library(ggOceanMaps)
library(dplyr)

d1 <- data.frame(
  title = c("base1", "base2", "base3", "base4", "base5", "base6", "base7"),
  lat = c(57.3, 58.8, 47.2, 57.8, 65.4, 56.7, 53.3),
  long = c(0.4, 3.4, 3.5, 1.2, 1.5, 2.6, 2.7))

ggOceanMaps::dist2land(d1) %>% 
  mutate(where = ifelse(ldist == 0, "land", 
                        ifelse(ldist < 100*1.852, "coast", "sea")))

#> Used long and lat as input coordinate column names in data
#> Using ArcticStereographic as land shapes.
#> Calculating distances with parallel processing...
#>   title  lat long     ldist where
#> 1 base1 57.3  0.4 138.62996 coast
#> 2 base2 58.8  3.4 105.43322 coast
#> 3 base3 47.2  3.5   0.00000  land
#> 4 base4 57.8  1.2 189.78665   sea
#> 5 base5 65.4  1.5 382.64410   sea
#> 6 base6 56.7  2.6 289.76883   sea
#> 7 base7 53.3  2.7  99.18336 coast

ggOceanMaps::dist2land函数以千米为单位返回距离。我转换为海里并提高了极限以获得所有不同的类别。您的示例坐标将产生一个“陆地”案例,其余为“海”。

reprex 包于 2021-12-01 创建(v2.0.1)

于 2021-12-01T10:22:06.013 回答
0

为了更快地实现geosphere:::dist2Line高效purrr循环和progress进度条,从而保持克里斯第一个答案的准确性,见下文:

library(geosphere)
library(purr)
library(progress)

spDistPoint2Line <- function (p, line, distfun)
{ 
  ## rewrite of internal function from geosphere
  test <- !sp::is.projected(line)
  if (!isTRUE(test)) {
    if (is.na(test)) {
      warning("Coordinate reference system of SpatialPolygons object is not set. Assuming it is degrees (longitude/latitude)!")
    }
    else {
      stop("Points are projected. They should be in degrees (longitude/latitude)")
    }
  }

  x <- line@lines
  n <- length(x)
  res <- matrix(nrow = nrow(p), ncol = 3)
  colnames(res) <- c("distance", "lon", "lat")

  line_coords <- map(x, ~(map(.@Lines, ~(.@coords)))) #basically an unlist
  pb <- progress_bar$new(
    total = length(line_coords),
    format = "(:spin) :current of :total, :percent, eta: :eta"
  )

  res[] <- Inf
  result <- reduce(
    .x = line_coords,
    .init = res,
    .f = function(res, crd){
      pb$tick()
      crd <- crd[[1]]
      r <- dist2Line(p, crd, distfun) # have to live without ID
      k <- r[, 1] < res[, 1]
      res[k, ] <- r[k, ]
      return(res)
    }
  )
  return(result)
}

dist2Line <- function (p, line, distfun = distGeo) 
{
  p <- geosphere:::.pointsToMatrix(p)
  if (inherits(line, "SpatialPolygons")) {
    line <- methods::as(line, "SpatialLines")
  }
  if (inherits(line, "SpatialLines")) {
    return(spDistPoint2Line(p, line, distfun))
  }

  line <- geosphere:::.pointsToMatrix(line)
  line1 <- line[-nrow(line), , drop = FALSE]
  line2 <- line[-1, , drop = FALSE]
  seglength <- distfun(line1, line2)

  res <-
    p %>%
      array_branch(1) %>%
      map(
        function(xy){
          crossdist <- abs(dist2gc(line1, line2, xy))
          trackdist1 <- alongTrackDistance(line1, line2, xy)
          trackdist2 <- alongTrackDistance(line2, line1, xy)
          mintrackdist <- pmin(trackdist1, trackdist2)
          maxtrackdist <- pmax(trackdist1, trackdist2)
          crossdist[maxtrackdist >= seglength] <- NA
          nodedist <- distfun(xy, line)
          warnopt = getOption("warn")
          options(warn = -1)
          distmin1 <- min(nodedist, na.rm = TRUE)
          distmin2 <- min(crossdist, na.rm = TRUE)
          options(warn = warnopt)
          if (distmin1 <= distmin2) {
            j <- which.min(nodedist)
            return(c(distmin1, line[j, ]))
          }
          else {
            j <- which.min(crossdist)
            if (trackdist1[j] < trackdist2[j]) {
              bear <- bearing(line1[j, ], line2[j, ])
              pt <- destPoint(line1[j, ], bear, mintrackdist[j])
              return(c(crossdist[j], pt))
            }
            else {
              bear <- bearing(line2[j, ], line1[j, ])
              pt <- destPoint(line2[j, ], bear, mintrackdist[j])
              return(c(crossdist[j], pt))
            }
          }
        }
      ) %>%
      simplify %>%
      matrix(ncol = 3, byrow = TRUE)

  colnames(res) <- c("distance", "lon", "lat")
  return(res)
}
于 2019-05-29T16:16:30.943 回答
0

首先,您需要一个包含英国海岸线的文件。

您可以使用此问题中提供的方法来了解某个点是否位于英国海岸线之内或之外。

然后,对于落入英国的点,您可以计算它们与海岸线点之间的Haversine 距离,以确定它们是否在距海岸 3 英里的范围内。

于 2018-08-14T09:04:47.730 回答