3

我正在尝试解决车辆路线问题,其中只有一辆汽车携带多种产品,需要多次接送。在解决了这个问题后,我还将扩展到多种类型的汽车。

一个特殊的设置是它有一个起点和一个终点,不必相同。我假设不同并将 1 和 n 设置为开始和结束的虚拟节点。

我部分使用了 IBM 提供的示例 TSP 代码来解决 subtour 问题,并从 Internet 获得帮助以打印出最佳游览。

因为我需要找到一条通过所有点的最佳路径。这是 NP 难的。但是作为第一次使用 ILog,我想使用 MIP 来解决这个问题以进行练习。

我在跟踪每个弧线中拾取的产品和丢弃的产品时遇到了麻烦。

我正在努力将我设定的运输成本降到最低

// Decision variables
dvar boolean x[Edges];              //car goes through this arc?
dvar boolean y[Edges][Products];    //at each e, currently loaded products in the car
dvar boolean z[Cities][Products];   //at each cities, what products to load or unload?

// Cost function
// at each arc that car goes through (distance + sum(products in the car*their weights))
dexpr float cost = sum (e in Edges) x[e] *
    (dist[e] + (sum (p in Products) y[e][p] * weight[p]));

y是将每个弧与当前加载的产品相关联的变量。z 说明在每个节点中加载或卸载的内容。由于只有一辆车,我认为实际上不需要 z,但对于多辆车的扩展,我认为这将是一件好事。

如果其中一些dvar不是必需的,请给我一些见解!下面是设置。

// Cities
int     n      = ...;
range   Cities  = 1..n;
range   Cities1 = 2..n-1;   //just for start/end restriction
range   Pickups = 2..3;
range   Dropoffs= 4..n-1;

// Edges -- sparse set
tuple       edge        {int i; int j;}
setof(edge) Edges       = {<i,j> | ordered i,j in Cities};
int         dist[Edges] = ...;

// Products
int     p        = ...;
range   Products = 1..p;

float Pickup[Cities][Products] = ...;
float Dropoff[Cities][Products] = ...;
float weight[Products] = ...;

// Products in pickup and dropoff sums up to equal amount
assert
    forall(p in Products)
        sum(o in Cities) Pickup[o][p] == sum(d in Cities) Dropoff[d][p];

tuple Subtour { int size; int subtour[Cities]; }
{Subtour} subtours = ...;

对以下限制的任何帮助都将非常有帮助。特别是在跟踪沿途装载的产品时。

// Objective
minimize cost;
subject to {
    // Each city is linked with two other cities
    forall (j in Cities1)
        sum (<i,j> in Edges) x[<i,j>] + sum (<j,k> in Edges) x[<j,k>] == 2;

    // Must start at node 1 and end at node n
    sum (e in Edges : e.i==1) x[e] == 1;
    sum (e in Edges : e.j==n) x[e] == 1;

// no product remains at 1,n (not necessary?)
sum (p in Products, e in Edges : e.i==1) y[e][p] == 0;
sum (p in Products, e in Edges : e.j==n) y[e][p] == 0;
sum (p in Products) z[1][p] == 0;
sum (p in Products) z[n][p] == 0;

// must pickup all
forall (p in Products) {
    sum(i in Pickups) z[i][p] == sum(i in Cities) Pickup[i][p];
        sum(i in Dropoffs) z[i][p] == sum(i in Cities) Dropoff[i][p];
}
    forall (i in Pickups, p in Products)
    z[i][p] <= Pickup[i][p];

    //tried to keep track of picked ups, but it is not working
forall (i in Pickups, j,k in Cities, p in Products : k < i < j)
  y[<i,j>][p] == y[<k,i>][p] + z[i][p];

//  forall (j in Cities, p in Products)
//    ctDemand:
//    sum(<i,j> in Edges) y[<i,j>][p] + sum(<j,i> in Edges) y[<j,i>][p] == z[j][p];

    // tried keeping track of dropoffs. It is partially working but not sure of it
forall (i, k in Cities, j in Dropoffs, p in Products : i < j < k) (y[<i,j>][p] == 1) 
    => y[<j,k>][p] == y[<i,j>][p] - Dropoff[j][p];

    // Subtour elimination constraints.
    forall (s in subtours)
        sum (i in Cities : s.subtour[i] != 0)
            x[<minl(i, s.subtour[i]), maxl(i, s.subtour[i])>] <= s.size-1;

};

并进行后期处理以找到子旅游

// POST-PROCESSING to find the subtours

// Solution information
int thisSubtour[Cities];
int newSubtourSize;
int newSubtour[Cities];

// Auxiliar information
int visited[i in Cities] = 0;
setof(int) adj[j in Cities] = {i | <i,j> in Edges : x[<i,j>] == 1} union
                          {k | <j,k> in Edges : x[<j,k>] == 1};
execute {

newSubtourSize = n;
for (var i in Cities) { // Find an unexplored node
if (visited[i]==1) continue;
var start = i;
var node = i;
var thisSubtourSize = 0;
for (var j in Cities)
  thisSubtour[j] = 0;
while (node!=start || thisSubtourSize==0) {
  visited[node] = 1;
  var succ = start; 
  for (i in adj[node]) 
    if (visited[i] == 0) {
      succ = i;
      break;
    }

  thisSubtour[node] = succ;
  node = succ;
  ++thisSubtourSize;
}

writeln("Found subtour of size : ", thisSubtourSize);
if (thisSubtourSize < newSubtourSize) {
  for (i in Cities)
    newSubtour[i] = thisSubtour[i];
    newSubtourSize = thisSubtourSize;
}
}
if (newSubtourSize != n)
writeln("Best subtour of size ", newSubtourSize);
}

main {
var opl = thisOplModel
var mod = opl.modelDefinition;
var dat = opl.dataElements;

var status = 0;
var it =0;
while (1) {
    var cplex1 = new IloCplex();
    opl = new IloOplModel(mod,cplex1);
    opl.addDataSource(dat);
    opl.generate();
    it++;
    writeln("Iteration ",it, " with ", opl.subtours.size, " subtours.");
    if (!cplex1.solve()) {
        writeln("ERROR: could not solve");
        status = 1;
        opl.end();
        break;
    }
    opl.postProcess();
    writeln("Current solution : ", cplex1.getObjValue());

    if (opl.newSubtourSize == opl.n) {
       // This prints the tour as a cycle
       var c = 1;      // current city
       var lastc = -1; // city visited right before C
       write(c);
       while (true) {
         var nextc = -1; // next city to visit

         // Find the next city to visit. To this end we
         // find the edge that leaves city C and does not
         // end in city LASTC. We know that exactly one such
         // edge exists, otherwise the solution would be infeasible.
         for (var e in opl.Edges) {
           if (opl.x[e] > 0.5) {
             if (e.i == c && e.j != lastc) {
               nextc = e.j;
               break;
             }
             else if (e.j == c && e.i != lastc) {
               nextc = e.i;
               break;
             }                                    
           }              
         }

        // Stop if we are back at the origin.
         if (nextc == -1) {
           break;
         }     

         // Write next city and update current and last city.
         write(" -> ", nextc);
         lastc = c;
         c = nextc;          
       }            

       opl.end();
       cplex1.end();
       break; // not found
     } 

    dat.subtours.add(opl.newSubtourSize, opl.newSubtour);
    opl.end();
    cplex1.end();
}

status;
}

这是我创建的示例数据集。我希望我的解释对每个人都有意义!非常感谢你!!

n = 10;
dist = [
633
257
91
412
150
80
134
259
505
390
661
227
488
572
530
555
289
228
169
112
196
154
372
262
383
120
77
105
175
476
267
351
309
338
196
63
34
264
360
29
232
444
249
402
495
];
// Products
p = 8;
Pickup = [
//   1,2,3,4,5,6,7,8 products
[0 0 0 0 0 0 0 0],//city1
[0 1 0 1 0 1 1 0],//city2
[1 0 1 0 1 0 0 1],//city3
[0 0 0 0 0 0 0 0],//city4
[0 0 0 0 0 0 0 0],//city5
[0 0 0 0 0 0 0 0],//city6
[0 0 0 0 0 0 0 0],//city7
[0 0 0 0 0 0 0 0],//city8
[0 0 0 0 0 0 0 0],//city9
[0 0 0 0 0 0 0 0] //city10
];
Dropoff = [
[0 0 0 0 0 0 0 0],
[0 0 0 0 0 0 0 0],
[0 0 0 0 1 0 0 0],
[0 0 0 0 0 1 0 0],
[0 0 0 0 0 0 1 0],
[1 0 0 0 0 0 0 1],//city6
[0 1 0 0 0 0 0 0],//city7
[0 0 1 0 0 0 0 0],//city8
[0 0 0 1 0 0 0 0],//city9
[0 0 0 0 0 0 0 0] //city10
];

weight = [1, 2, 3, 4, 5, 6, 7, 8];
4

1 回答 1

1

好的,我想了很久来解决这个问题。最后,我用合理的运行时间解决了这个问题。我会分享给那些可能想对我所做的事情提出异议或改善运行时间的人。同时,如果有人能够验证我所做的事情在逻辑上确实是正确的,那就太棒了。

哦,我已经解决了它的扩展,我已经计划了一些额外的限制。我希望我的评论足以理解我所做的事情。

// Constants
int TotalTimeLimit      = ...;
int LoadTime            = ...;
int UnloadTime          = ...;
int TransitCost = ...;
int MaxTransit          = ...;

// Cities
int     n      = ...;
int     pickupN= ...;       //4
range   Cities  = 1..n;
range   Cities1 = 2..n-1;   //just for start/end restriction
range   Pickups = 2..pickupN+1; //2-5
range   Dropoffs= pickupN+2..n-1;   //7-17

// Edges -- sparse set
tuple       edge        {int i; int j;}
setof(edge) Edges       = {<i,j> | i,j in Cities};
int         dist[Edges] = ...;
int         time[Edges] = ...;

// Products
int     P        = ...;
range   Products = 1..P;

int Pickup[Cities][Products] = ...;
int Dropoff[Cities][Products] = ...;
int weight[Products] = ...;
int volume[Products] = ...;

// Products in pickup and dropoff sums up to equal amount
assert
    forall(p in Products)
        sum(o in Cities) Pickup[o][p] == sum(d in Cities) Dropoff[d][p];

//Trucks
{string} Type = ...;
int     Max[Type] = ...;
int     c   = sum(t in Type) Max[t];
range   Cars= 1..c;
int     VolumeCapacity[Cars] = ...;
int     WeightCapacity[Cars] = ...;
int     NumberCapacity[Cars] = ...;
int     FixedCost[Cars]      = ...;
int     forbid[Cities][Cars] = ...;

// Decision variables
dvar boolean x[Cars][Edges];
dvar boolean y[Cars][Edges][Products];
dvar boolean z[Cars][Cities][Products];
dvar boolean isCarUsed[Cars];

// Cost function
dexpr float cost = sum (c in Cars) (isCarUsed[c]*FixedCost[c] + 
    (sum(e in Edges) (x[c][e]*(dist[e] + TransitCost) + (sum (p in Products) y[c][e][p] * weight[p]))))
    - 30 - sum(p in Products) weight[p];

// Objective
minimize cost;
subject to {
// Total pickups for each p equal the total sum of each colum of z in pickups
forall (p in Products)
    sum(i in Pickups, c in Cars) z[c][i][p] == sum(i in Pickups) Pickup[i][p];

// For each node, each car can pick at most the node's stock
forall(i in Pickups, p in Products, c in Cars)
    z[c][i][p] <= Pickup[i][p];

// For each car, picked up products should be smaller than car's capacities
forall (c in Cars, e in Edges) {
    sum(p in Products) y[c][e][p] <= NumberCapacity[c];
    sum(p in Products) y[c][e][p]*weight[p] <= WeightCapacity[c];
    sum(p in Products) y[c][e][p]*volume[p] <= VolumeCapacity[c];
}

// For each car and product, its picked up amount should equal dropped off amount
forall (c in Cars, p in Products)
    sum(i in Pickups) z[c][i][p] == sum(i in Dropoffs) z[c][i][p];

// Total dropoffs for each p equal the total sum of each column of z in dropoffs
forall (p in Products)
    sum(i in Dropoffs, c in Cars) z[c][i][p] == sum(i in Dropoffs) Dropoff[i][p];

// For each node, each car can drop at most its needs
forall(i in Dropoffs, p in Products, c in Cars)
    z[c][i][p] <= Dropoff[i][p];
    
// For each car, it cannot stay at one place
forall (c in Cars)
    sum(i in Cities) x[c][<i,i>] == 0;

// Prevents looping, must start at node 1 and end at node n
forall (c in Cars) {
    sum (e in Edges : e.i==n) x[c][e] == 0;
    sum (e in Edges : e.j==1) x[c][e] == 0;
}

// For each car, it cannot go back and forth
forall (c in Cars, i,j in Cities)
    x[c][<i,j>]+x[c][<j,i>] <= 1;

// Each city is linked with two other cities
forall (j in Cities1, c in Cars)
    sum (<i,j> in Edges) x[c][<i,j>] - sum (<j,k> in Edges) x[c][<j,k>] == 0;

// If car is used, must start at node 1 and end at node n
forall(c in Cars) {
    100*sum(e in Edges : e.i==1) x[c][e] >= sum (p in Products, i in Cities1) z[c][i][p];
    100*sum(e in Edges : e.j==n) x[c][e] >= sum (p in Products, i in Cities1) z[c][i][p];
    100*isCarUsed[c] >= sum(p in Products, i in Cities1) z[c][i][p];
}
forall (c in Cars) {
    sum(e in Edges : e.i==1) x[c][e] <= 1;
    sum(e in Edges : e.j==n) x[c][e] <= 1;
}
    
// For each car, it needs to cross nodes that picks or drops something
forall (c in Cars, i in Cities)
    100*sum (j in Cities) x[c][<i,j>] >= sum (p in Products) z[c][i][p];

// For each car, its transit count <= maxTransit
forall (c in Cars)
    sum(e in Edges) x[c][e] <= MaxTransit;

// For each car, and for each node, we need to check whether time took is <= totalTimeLimit
forall(c in Cars)
    sum(e in Edges : e.i in Pickups || e.i in Dropoffs) x[c][e]*time[e] 
        + LoadTime*sum(i in Pickups, p in Products) z[c][i][p] + UnloadTime*sum(i in Dropoffs, p in Products) z[c][i][p]
            <= TotalTimeLimit;

// Certain type of cars cannot go to certain city
forall (c in Cars, i in Cities)
    if (forbid[i][c] == 1)
        sum(j,k in Cities) (x[c][<i,j>] + x[c][<k,i>]) == 0;

// Keeps culmulated pacakges through each arcs
forall (c in Cars, i in Pickups, p in Products)
    sum(k in Cities) y[c][<i,k>][p] == sum(j in Cities) y[c][<j,i>][p] + z[c][i][p];
forall (c in Cars, i in Pickups, j in Cities)
    100*x[c][<i,j>] >= sum(p in Products) y[c][<i,j>][p];

// MTZ subtour elimination constraints
forall (c in Cars, j in Dropoffs, i,k in Cities, p in Products : j != i && j != k)
    y[c][<i,j>][p] - y[c][<j,k>][p] >= z[c][j][p] - 100*(1-x[c][<i,j>]);
};

这是一个示例数据。我做了这样的设置,我们先上车,然后下车。我还为开始和结束创建了 3 个虚拟变量,以及上车和下车之间的中转位置。

n = 12;
pickupN = 3;
dist = [
9999999
0
0
0
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
390
661
0
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
390
9999999
228
0
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
661
228
9999999
0
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
63
34
264
360
208
329
9999999
9999999
9999999
9999999
9999999
9999999
9999999
232
444
292
297
47
0
9999999
9999999
9999999
9999999
9999999
232
9999999
 29
232
444
292
0
9999999
9999999
9999999
9999999
9999999
444
29
9999999
249
402
250
0
9999999
9999999
9999999
9999999
9999999
292
232
249
9999999
495
352
0
9999999
9999999
9999999
9999999
9999999
297
444
402
495
9999999
154
0
9999999
9999999
9999999
9999999
9999999
47
292
250
352
154
9999999
0
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
9999999
];
time = [
9999999 
0 
0 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
20 
52 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
14 
9999999 
26 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
43 
31 
9999999 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
12 
31 
10 
17 
26 
26 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
21 
19 
20 
18 
7 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
35 
9999999 
6 
13 
30 
28 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
39 
23 
9999999 
38 
23 
38 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
23 
32 
20 
9999999 
45 
17 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
28 
35 
37 
24 
9999999 
24 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
2 
39 
8 
37 
21 
9999999 
0 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999 
9999999
9999999 
9999999 
];

TotalTimeLimit  = 150;
LoadTime        = 10;
UnloadTime      = 10;

TransitCost = 10;
//DropoffTransitCost    = 10;
MaxTransit          = 10;

// Products
P = 12;
Pickup = [
//   1,2,3,4,5,6,7,8 9 101112 products
[0 0 0 0 0 0 0 0 0 0 0 0],//city1 pickstart
[0 0 0 1 0 0 1 0 1 1 0 0],//city2
[1 1 0 0 0 0 0 1 0 0 1 0],//city3
[0 0 1 0 1 1 0 0 0 0 0 1],//city4
[0 0 0 0 0 0 0 0 0 0 0 0],//city5 pickend & dropstart
[0 0 0 0 0 0 0 0 0 0 0 0],//city6 
[0 0 0 0 0 0 0 0 0 0 0 0],//city7
[0 0 0 0 0 0 0 0 0 0 0 0],//city8
[0 0 0 0 0 0 0 0 0 0 0 0],//city9
[0 0 0 0 0 0 0 0 0 0 0 0],//city10
[0 0 0 0 0 0 0 0 0 0 0 0],//city11
[0 0 0 0 0 0 0 0 0 0 0 0]//city12
];
Dropoff = [
[0 0 0 0 0 0 0 0 0 0 0 0],
[0 0 0 0 0 0 0 0 0 0 0 0],
[0 0 0 0 0 0 0 0 0 0 0 0],
[0 0 0 0 0 0 0 0 0 0 0 0],
[0 0 0 0 0 0 0 0 0 0 0 0],//city5 pickend & dropstart
[0 0 0 0 1 0 0 0 0 0 0 1],//city6 
[1 0 0 0 0 0 0 0 0 0 0 0],//city7
[0 1 0 0 0 0 1 0 0 0 0 0],//city8
[0 0 0 0 0 1 0 0 1 0 0 0],//city9
[0 0 0 1 0 0 0 0 0 1 0 0],//city10
[0 0 1 0 0 0 0 1 0 0 1 0],//city11
[0 0 0 0 0 0 0 0 0 0 0 0]//city12 dropend
];

weight = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
volume = [20, 500, 30, 20, 60, 100, 300, 50, 10, 400, 1, 15];

//Cars
Type ={"SmallTruck", "MiddleTruck", "BigTruck"};
Max = #[
SmallTruck : 2,
MiddleTruck : 2,
BigTruck : 2
]#;
VolumeCapacity = [100, 100, 500, 500, 1000, 1000];
WeightCapacity = [10, 10, 30, 30, 50, 50];
NumberCapacity = [4, 4, 6, 6, 12, 12];
FixedCost = [100, 100, 200, 200, 300, 300];

forbid = [ 
[0 0 0 0 0 0],//city1
[0 0 0 0 0 0],//city2
[0 0 0 0 0 0],//city3
[0 0 0 0 0 0],//city4 pickend & dropstart
[0 0 0 0 0 0],//city5 
[0 0 0 0 0 0],//city6
[0 0 0 0 0 0],//city7
[0 0 0 0 0 0],//city8
[0 0 0 0 0 0],//city9
[0 0 0 0 1 1],//city10
[0 0 0 0 0 0],//city11
[0 0 0 0 0 0]//city12
];
于 2018-08-21T16:33:04.400 回答