4

我正在尝试在 Tensorflow 中构建一个序列到序列模型,我已经遵循了几个教程,一切都很好。直到我决定在我的模型中删除教师强迫。下面是我正在使用的解码器网络示例:

def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, 
                     target_sequence_length, max_summary_length, 
                     output_layer, keep_prob):
"""
Create a decoding layer for training
:param encoder_state: Encoder State
:param dec_cell: Decoder RNN Cell
:param dec_embed_input: Decoder embedded input
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_summary_length: The length of the longest sequence in the batch
:param output_layer: Function to apply the output layer
:param keep_prob: Dropout keep probability
:return: BasicDecoderOutput containing training logits and sample_id
"""

training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,
                                                    sequence_length=target_sequence_length,
                                                    time_major=False)

training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, encoder_state, output_layer)

training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
                                                            impute_finished=True,
                                                            maximum_iterations=max_summary_length)[0]
return training_decoder_output

据我了解,TrainingHelper 正在强迫教师。尤其是将真实输出作为其参数的一部分。我尝试在没有培训帮助的情况下使用解码器,但这似乎是强制性的。我试图将真实输出设置为 0,但显然 TrainingHelper 需要输出。我也尝试用谷歌搜索解决方案,但没有找到任何相关内容。

===================更新=============

我很抱歉之前没有提到这一点,但我也尝试使用 GreedyEmbeddingHelper。该模型运行良好几次迭代,然后开始抛出运行时错误。似乎 GreedyEmbeddingHelper 开始预测与预期形状不同的输​​出。下面是我使用 GreedyEmbeddingHelper 时的功能

def decoding_layer_train(encoder_state, dec_cell, dec_embeddings, 
                         target_sequence_length, max_summary_length, 
                         output_layer, keep_prob):
    """
    Create a decoding layer for training
    :param encoder_state: Encoder State
    :param dec_cell: Decoder RNN Cell
    :param dec_embed_input: Decoder embedded input
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_summary_length: The length of the longest sequence in the batch
    :param output_layer: Function to apply the output layer
    :param keep_prob: Dropout keep probability
    :return: BasicDecoderOutput containing training logits and sample_id
    """

    start_tokens = tf.tile(tf.constant([target_vocab_to_int['<GO>']], dtype=tf.int32), [batch_size], name='start_tokens')


    training_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings,
                                                                start_tokens,
                                                                target_vocab_to_int['<EOS>'])

    training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, encoder_state, output_layer)

    training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
                                                                impute_finished=True,
                                                                maximum_iterations=max_summary_length)[0]
    return training_decoder_output

这是经过多次训练迭代后引发的错误示例:

    Ok

Epoch   0 Batch    5/91 - Train Accuracy: 0.4347, Validation Accuracy: 0.3557, Loss: 2.8656
++++Epoch   0 Batch    5/91 - Train WER: 1.0000, Validation WER: 1.0000

Epoch   0 Batch   10/91 - Train Accuracy: 0.4050, Validation Accuracy: 0.3864, Loss: 2.6347
++++Epoch   0 Batch   10/91 - Train WER: 1.0000, Validation WER: 1.0000

---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-115-1d2a9495ad42> in <module>()
     57                  target_sequence_length: targets_lengths,
     58                  source_sequence_length: sources_lengths,
---> 59                  keep_prob: keep_probability})
     60 
     61 

/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
    887     try:
    888       result = self._run(None, fetches, feed_dict, options_ptr,
--> 889                          run_metadata_ptr)
    890       if run_metadata:
    891         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1116     if final_fetches or final_targets or (handle and feed_dict_tensor):
   1117       results = self._do_run(handle, final_targets, final_fetches,
-> 1118                              feed_dict_tensor, options, run_metadata)
   1119     else:
   1120       results = []

/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1313     if handle is None:
   1314       return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1315                            options, run_metadata)
   1316     else:
   1317       return self._do_call(_prun_fn, self._session, handle, feeds, fetches)

/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
   1332         except KeyError:
   1333           pass
-> 1334       raise type(e)(node_def, op, message)
   1335 
   1336   def _extend_graph(self):

InvalidArgumentError: logits and labels must have the same first dimension, got logits shape [1100,78] and labels shape [1400]

我不确定,但我猜 GreedyEmbeddingHepler 不应该用于训练。,我将感谢您对如何阻止老师强迫的帮助和想法。

谢谢你。

4

1 回答 1

2

有不同的助手都继承自同一个类。您可以在文档中找到更多信息。正如您所说TrainingHelper,需要预定义的真实输入,这些输入预计将从解码器输出,并且这些真实输入作为下一步提供(而不是提供上一步的输出)。这种方法(通过一些研究)应该加快解码器的训练。

在您的情况下,您正在寻找GreedyEmbeddingHelper. 只需将其替换TrainingHelper为:

training_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
    embedding=embedding,
    start_tokens=tf.tile([GO_SYMBOL], [batch_size]),
    end_token=END_SYMBOL)

只需将其替换为embedding您在问题中使用的张量和变量即可。该助手自动获取应用嵌入的步骤的输出并将其作为输入提供给后续步骤。第一步是使用start_token.

通过 using 得到的输出GreedyEmbeddingHelper不必与预期输出的长度相匹配。您必须使用填充来匹配它们的形状。TensorFlow 提供函数tf.pad()。还tf.contrib.seq2seq.dynamic_decode返回包含 的元组(final_outputs, final_state, final_sequence_lengths),因此您可以使用 的值final_sequece_lengths进行填充。

logits_pad = tf.pad(
    logits,
    [[0, tf.maximum(expected_length - tf.reduce_max(final_seq_lengths), 0)],
     [0, 0]],
    constant_values=PAD_VALUE,
    mode='CONSTANT')

targets_pad = tf.pad(
    targets,
    [[0, tf.maximum(tf.reduce_max(final_seq_lengths) - expected_length, 0)]],
    constant_values=PAD_VALUE,
    mode='CONSTANT')

您可能需要根据输入的形状稍微更改填充。targets如果您将maximum_iterations参数设置为匹配targets形状,您也不必填充。

于 2018-08-15T15:30:35.887 回答