0

我正在寻找使用双元组而不是来自单个字符串的单元组创建一个共现矩阵。我指的是以下链接

http://text2vec.org/glove.html

https://tm4ss.github.io/docs/Tutorial_5_Co-occurrence.html#3_statistical_significance

我想创建矩阵并遍历它以创建数据集,如下所示

Trem1     Term2     Score

最大的收获是用二元组遍历句子。对此的任何帮助都会很棒

4

1 回答 1

1

只需指定您的二元组并创建共现矩阵。下面是一些(非常)简单的例子。选择 1 个包,然后用那个包做所有事情。quanteda 和 text2vec 都可以使用多个内核/线程。可以使用 reshape2::melt 遍历生成的共现矩阵,如下所示reshape2::melt(as.matrix(my_cooccurence_matrix))

txt <- c("The quick brown fox jumped over the lazy dog.",
         "The dog jumped and ate the fox.")

使用 quanteda 创建特征共现矩阵:

library(quanteda)
toks <- tokens(char_tolower(txt), remove_punct = TRUE, ngrams = 2)
f <- fcm(toks, context = "document")

Feature co-occurrence matrix of: 14 by 14 features.
14 x 14 sparse Matrix of class "fcm"
             features
features      the_quick quick_brown brown_fox fox_jumped jumped_over over_the the_lazy lazy_dog the_dog dog_jumped jumped_and and_ate
  the_quick           0           1         1          1           1        1        1        1       0          0          0       0
  quick_brown         0           0         1          1           1        1        1        1       0          0          0       0
  brown_fox           0           0         0          1           1        1        1        1       0          0          0       0
  fox_jumped          0           0         0          0           1        1        1        1       0          0          0       0
  jumped_over         0           0         0          0           0        1        1        1       0          0          0       0
  over_the            0           0         0          0           0        0        1        1       0          0          0       0
  the_lazy            0           0         0          0           0        0        0        1       0          0          0       0
  lazy_dog            0           0         0          0           0        0        0        0       0          0          0       0
  the_dog             0           0         0          0           0        0        0        0       0          1          1       1
  dog_jumped          0           0         0          0           0        0        0        0       0          0          1       1
  jumped_and          0           0         0          0           0        0        0        0       0          0          0       1
  and_ate             0           0         0          0           0        0        0        0       0          0          0       0
  ate_the             0           0         0          0           0        0        0        0       0          0          0       0
  the_fox             0           0         0          0           0        0        0        0       0          0          0       0
             features
features      ate_the the_fox
  the_quick         0       0
  quick_brown       0       0
  brown_fox         0       0
  fox_jumped        0       0
  jumped_over       0       0
  over_the          0       0
  the_lazy          0       0
  lazy_dog          0       0
  the_dog           1       1
  dog_jumped        1       1
  jumped_and        1       1
  and_ate           1       1
  ate_the           0       1
  the_fox           0       0

使用 text2vec 创建特征共现矩阵:

library(text2vec)
i <- itoken(txt)
v <- create_vocabulary(i, ngram = c(2L, 2L))
vectorizer <- vocab_vectorizer(v) 
f2 <- create_tcm(i, vectorizer)

14 sparse Matrix of class "dgTMatrix"
   [[ suppressing 14 column names ‘the_lazy’, ‘and_ate’, ‘The_quick’ ... ]]

the_lazy    . . . 0.25 1.0 . 0.2 0.3333333 .         .   1.0000000 .         0.5000000 .        
and_ate     . . . .    .   1 .   .         0.5000000 1.0 .         0.3333333 .         0.5000000
The_quick   . . . 0.50 .   . 1.0 0.3333333 .         .   0.2000000 .         0.2500000 .        
brown_fox   . . . .    0.2 . 1.0 1.0000000 .         .   0.3333333 .         0.5000000 .        
lazy_dog.   . . . .    .   . .   0.2500000 .         .   0.5000000 .         0.3333333 .        
jumped_and  . . . .    .   . .   .         0.3333333 0.5 .         0.5000000 .         1.0000000
quick_brown . . . .    .   . .   0.5000000 .         .   0.2500000 .         0.3333333 .        
fox_jumped  . . . .    .   . .   .         .         .   0.5000000 .         1.0000000 .        
the_fox.    . . . .    .   . .   .         .         1.0 .         0.2000000 .         0.2500000
ate_the     . . . .    .   . .   .         .         .   .         0.2500000 .         0.3333333
over_the    . . . .    .   . .   .         .         .   .         .         1.0000000 .        
The_dog     . . . .    .   . .   .         .         .   .         .         .         1.0000000
jumped_over . . . .    .   . .   .         .         .   .         .         .         .        
dog_jumped  . . . .    .   . .   .         .         .   .         .         .         .        
于 2018-08-01T10:33:52.777 回答