我正在执行以下操作:
- 我有张量流 DNN 层的列表。
nn.append(tf.layers.dense(...))
- 上面的每个列表都附加到 np.memmap 对象列表中。
nnList[i] = nn
- 我可以访问 memmap 列表并检索张量。但是当尝试访问其中的张量时,
joblib.parallel
它会返回“无”类型的对象。但是,内部的 memmap 列表的长度是正确的joblib.parallel
。
我在下面附上了一个示例代码。
import os
import tempfile
import numpy as np
import tensorflow as tf
from joblib import Parallel, delayed, load, dump
tmpFolder = tempfile.mkdtemp()
__nnFile = os.path.join(tmpFolder, 'nn.mmap')
nnList = np.memmap(__nnFile, dtype=object, mode='w+', shape=(5))
def main():
for i in range(5):
nn = []
input = tf.placeholder(dtype=tf.float32, shape=(1, 8))
nn.append(tf.layers.dense(inputs=input, units=8, activation=tf.sigmoid,
trainable=False))
nn.append(tf.layers.dense(inputs=nn[0], units=2, activation=tf.sigmoid,
trainable=False))
nnList[i] = nn
print('nnList: ' + str(len(nnList)))
for i in range(5):
nn = nnList[i]
print(nn)
print(nn[-1])
print('--------------------------- ' + str(i))
with Parallel(n_jobs = -1) as parallel:
parallel(delayed(func1)(i) for i in range(5))
def func1(i):
print('nnList: ' + str(len(nnList)))
for x in range(5):
nn = nnList[x]
print(nn)
print('--------------------------- ' + str(x))
if __name__ == '__main__':
main()
上面的代码给出了这个输出。请注意数组的长度以及张量如何变为None
.
nnList: 5
[<tf.Tensor 'dense/Sigmoid:0' shape=(1, 8) dtype=float32>, <tf.Tensor 'dense_1/Sigmoid:0' shape=(1, 2) dtype=float32>]
Tensor("dense_1/Sigmoid:0", shape=(1, 2), dtype=float32)
--------------------------- 0
[<tf.Tensor 'dense_2/Sigmoid:0' shape=(1, 8) dtype=float32>, <tf.Tensor 'dense_3/Sigmoid:0' shape=(1, 2) dtype=float32>]
Tensor("dense_3/Sigmoid:0", shape=(1, 2), dtype=float32)
--------------------------- 1
[<tf.Tensor 'dense_4/Sigmoid:0' shape=(1, 8) dtype=float32>, <tf.Tensor 'dense_5/Sigmoid:0' shape=(1, 2) dtype=float32>]
Tensor("dense_5/Sigmoid:0", shape=(1, 2), dtype=float32)
--------------------------- 2
[<tf.Tensor 'dense_6/Sigmoid:0' shape=(1, 8) dtype=float32>, <tf.Tensor 'dense_7/Sigmoid:0' shape=(1, 2) dtype=float32>]
Tensor("dense_7/Sigmoid:0", shape=(1, 2), dtype=float32)
--------------------------- 3
[<tf.Tensor 'dense_8/Sigmoid:0' shape=(1, 8) dtype=float32>, <tf.Tensor 'dense_9/Sigmoid:0' shape=(1, 2) dtype=float32>]
Tensor("dense_9/Sigmoid:0", shape=(1, 2), dtype=float32)
--------------------------- 4
nnList: 5
None
--------------------------- 0
None
--------------------------- 1
None
--------------------------- 2
None
--------------------------- 3
None
--------------------------- 4
我怎样才能访问里面的张量joblib.parallel
?请帮忙。