我有一个包含 32 个变量和 48 个观察值的数据集(观察值会增加,因为我们正处于通过订阅收集数据的阶段)。由于数据集具有高度的多重共线性,我介绍了 Farrar – Glauber Test。测试的单个度量 (idiags) 有一个称为 Klein 的参数,其值为 0s 和 1s,表示变量是否具有多重共线性。现在基于 Klien 的值,我需要从主数据集中删除列。我被困在如何根据数据集 imcdiag_idiagval 中的 Klein 值从主数据集(model_df)中删除/删除。
下面是我的示例代码,model_df0:没有目标变量的数据集 model_df:有目标变量的数据集
library(mctest)
#Farrar – Glauber test(F–test) for location of multicollinearity
# Individual Multicollinearity Diagnostic Measures
imcdiag_out = imcdiag(model_df0, model_df$TARGET)
summary(imcdiag_out)
#Output of summary function below,
Length Class Mode
idiags 224 -none- numeric
x 1536 -none- numeric
y 48 -none- numeric
method 0 -none- NULL
corr 1 -none- logical
call 3 -none- call
pval 29 -none- numeric
R2 1 -none- numeric
all 1 -none- logical
alldiag 224 -none- logical
imcdiag_idiagval = as.data.frame(imcdiag_out$idiags)
> imcdiag_idiagval$Klein
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
在 32 个变量中,Klein 中带 1 的值具有多重共线性。因此需要删除它们
> dput(head(model_df))
structure(list(Mon = structure(c(2014.33333333333, 2014.41666666667,
2014.5, 2014.58333333333, 2014.66666666667, 2014.75), class = "yearmon"),
Al_Prod_Qty = c(4516084.63333333, 4488436.58064516, 4529767.5,
4468792.16129032, 4515652.4516129, 4513669.13333333), US_Indus_Growth = c(2.72933333333333,
3.00806451612903, 3.25466666666667, 3.41161290322581, 4.03322580645161,
3.22333333333333), China_Elec_Rail = c(6.206, 7.30733333333333,
7.18741935483871, 5.84322580645161, 3.90166666666667, 5.65290322580645
), DS_Index = c(80.4, 79.81, 81.52, 82.78, 86.05, 87.02),
Al_Prod_Africa = c(152L, 143L, 144L, 148L, 142L, 144L), Al_Prod_NorthAmerica = c(392L,
372L, 386L, 386L, 372L, 379L), Al_Prod_SouthAmerica = c(135L,
117L, 117L, 116L, 111L, 120L), Al_Prod_AsiaEXChina = c(203L,
193L, 203L, 198L, 194L, 204L), Al_Prod_WestEurope = c(304L,
297L, 306L, 306L, 298L, 307L), Al_Prod_EastCentralEurope = c(319L,
309L, 319L, 319L, 310L, 321L), Al_Prod_Oceania = c(178L,
174L, 175L, 166L, 160L, 165L), Al_Prod_GCC = c(418L, 412L,
427L, 426L, 413L, 426L), Al_Prod_ChinaEstimated = c(12, 15,
18, 22, 23, 24), Al_Prod_Total = c(4441L, 4419L, 4507L, 4553L,
4502L, 4619L), Al_Prod_DailyAvg = c(143.3, 147.3, 145.4,
146.9, 150.1, 149), almna_prod_AfricaAsiaExChina = c(395L,
445L, 459L, 436L, 413L, 395L), almna_prod_NorthAmerica = c(440L,
444L, 479L, 476L, 441L, 455L), almna_prod_SouthAmerica = c(1137L,
1077L, 1047L, 1063L, 1068L, 1097L), almna_prod_WestEurope = c(326L,
363L, 334L, 386L, 351L, 323L), almna_prod_EastCentralEurope = c(352L,
322L, 330L, 321L, 325L, 325L), almna_prod_Oceania = c(1696L,
1632L, 1663L, 1631L, 1579L, 1693L), almna_prod_ChinaEstimated = c(4513L,
4448L, 4509L, 4461L, 4416L, 4754L), almna_prod_Total = c(8859L,
8731L, 8821L, 8774L, 8593L, 9042L), almna_prod_DailyAverage = c(285.77,
291.03, 284.55, 283.03, 286.43, 291.68), TARGET = c(1749.1,
1834.4, 1945.41, 2030.23, 1992.48, 1938.2), lme_al_3month_price = c(1790.98,
1868.83, 1967.28, 2038.1, 2023.48, 1956.39), lme_al_stock = c(5271645,
5116815, 4990208, 4887148, 4706865, 4519988), Coal_Central_Appalachia_Price = c(60.7,
60.05, 57.25, 56.35, 54.59, 56.3), Coal_Northern_Apppalachia_Price = c(65.5,
64.5, 63.7, 62.75, 63.3, 65.55), Coal_Illinois_Basin_Price = c(46,
45.45, 44, 44, 43.4, 44.7), Coal_Powder_River_Price = c(13,
12.55, 12.25, 11.55, 11.25, 11.55), Coal_Uinta_Basin_Price = c(36.75,
36.75, 36.45, 36.45, 37, 37.75), BrentCrudePrice = c(109.21,
111.03, 104.94, 101.12, 94.67, 84.17)), class = c("data.table",
"data.frame"), row.names = c(NA, -6L), .internal.selfref = <pointer: 0x00000000025f1ef0>)