我实现了一个序列到序列编码器解码器,但我在预测中改变我的目标长度时遇到了问题。它适用于相同长度的训练序列,但如果不同则无效。我需要改变什么?
from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np
num_encoder_tokens = 2
num_decoder_tokens = 2
encoder_seq_length = None
decoder_seq_length = None
batch_size = 100
epochs = 2000
hidden_units=10
timesteps=10
input_seqs = np.random.random((1000, 10, num_encoder_tokens))
target_seqs = np.random.random((1000, 10, num_decoder_tokens))
#define training encoder
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(hidden_units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
#define training decoder
decoder_inputs = Input(shape=(None,num_decoder_tokens))
decoder_lstm = LSTM(hidden_units, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_encoder_tokens, activation='tanh')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#Run training
model.compile(optimizer='adam', loss='mse')
model.fit([input_seqs, target_seqs], target_seqs,batch_size=batch_size, epochs=epochs)
#new target data
target_seqs = np.random.random((2000, 10, num_decoder_tokens))
# define inference encoder
encoder_model = Model(encoder_inputs, encoder_states)
# define inference decoder
decoder_state_input_h = Input(shape=(hidden_units,))
decoder_state_input_c = Input(shape=(hidden_units,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
# Initalizse states
states_values = encoder_model.predict(input_seqs)
在这里它需要与 input_seqs 中相同的批量大小,并且不接受具有 2000 个批次的 target_seqs
target_seq = np.zeros((1, 1, num_decoder_tokens))
output=list()
for t in range(timesteps):
output_tokens, h, c = decoder_model.predict([target_seqs] + states_values)
output.append(output_tokens[0,0,:])
states_values = [h,c]
target_seq = output_tokens
我需要改变什么模型接受可变长度的输入?