我有一个 runjags 脚本,可以为岛上的每个细胞生成预测的洞穴密度。我希望从每个单元格的 mcmc 对象中获得多次绘制(大约 100 次)。我的论文导师认为我应该能够使用 coda 包来做到这一点,但我只能提取每个单元格的平均值,而不是多个实现。
用于运行模型并提取平均值的代码:
runjags.options(force.summary=TRUE)
print(runjags.options())
S2VS1_best_fit_result <- run.jags(model=S2VS1_best_fit_model, burnin=100000, sample=1000, n.chains=3, modules="glm", thin = 100)
S2_result <- as.mcmc(S2VS1_best_fit_result, vars = "S2")
S2_result_list <- as.mcmc.list(S2VS1_best_fit_result, vars = "S2")
S1_summary <- summary(S2_result_list)
S1_stats <- S2_summary$statistics
谁能告诉我如何为每个单元格获取多个值?
该模型:
S2VS1_best_fit_model <- "model{
for(i in 1:K) { # Cells loop
S2[i]~dpois(lambda1[i])
lambda1[i]<- exp(a0+a1*normalise_DEM_aspect[i]+a2*normalise_DEM_elevation[i]+a3*normalise_DEM_slope[i]+
a4*normalise_DEM_elevation[i]*normalise_DEM_slope[i]+
a5*normalise_sentinel5[i]+a6*normalise_sentinel10[i]+
a8*S1[i]+
a9*Tussac[i])
muLogit_tussac[i]<-b0+b1*normalise_sentinel1[i]+b2*normalise_sentinel7[i]+b3*normalise_sentinel8[i]+
b4*normalise_sentinel9[i]+b5*normalise_DEM_slope[i]
Logit_tussac[i]~dnorm(muLogit_tussac[i], tau) # tau = precision (1/variance or 1/sd^2) - see Lecture 5, Slide 17
Tussac[i]<-exp(Logit_tussac[i])/(1+exp(Logit_tussac[i]))
S1[i]~dpois(lambda2[i])
lambda2[i]<-exp(c0)
}
# Priors
a0~dnorm(0, 10)
a1~dnorm(0, 10)
a2~dnorm(0, 10)
a3~dnorm(0, 10)
a4~dnorm(0, 10)
a5~dnorm(0, 10)
a6~dnorm(0, 10)
a7~dnorm(0, 10)
a8~dnorm(0, 10)
a9~dnorm(0, 10)
b0~dnorm(0, 10)
b1~dnorm(0, 10)
b2~dnorm(0, 10)
b3~dnorm(0, 10)
b4~dnorm(0, 10)
b5~dnorm(0, 10)
c0~dnorm(0, 10)
tau~dgamma(0.001, 0.001)
#data# S1, S2, K
#data# normalise_sentinel1, normalise_sentinel5, normalise_sentinel7
#data# normalise_sentinel9, normalise_sentinel8, normalise_sentinel10
#data# normalise_DEM_aspect, normalise_DEM_elevation, normalise_DEM_slope
#inits# a0, a1, a2, a3, a4, a5
#inits# b0, b1, b2, b3, b4, b5
#inits# c0
#monitor# a0, a1, a2, a3, a4, a5, b0
#monitor# b0, b1, b2, b3, b4, b5
#monitor# c0
#monitor# ped, dic
#monitor# S1, S2
}"
数据集的前 5 行:
S1 S2 Logit_tussac moisture DEM_slope DEM_aspect DEM_elevation sentinel1 sentinel2 sentinel3 sentinel4 sentinel5 sentinel6 sentinel7 sentinel8 sentinel9 sentinel10
NA NA NA NA 14.917334 256.1612 12.24432 0.0513 0.0588 0.0541 0.1145 0.1676 0.1988 0.1977 0.1658 0.1566 0.0770
0 0 -9.210240 1 23.803741 225.1231 16.88028 0.1058 0.1370 0.2139 0.2387 0.2654 0.2933 0.3235 0.2928 0.3093 0.1601
NA NA NA NA 20.789165 306.0945 18.52480 0.0287 0.0279 0.0271 0.0276 0.0290 0.0321 0.0346 0.0452 0.0475 0.0219
NA NA -9.210240 1 6.689442 287.9641 36.08975 0.0462 0.0679 0.1274 0.1535 0.1797 0.2201 0.2982 0.2545 0.4170 0.2252
0 0 -9.210240 1 25.476444 203.0659 23.59964 0.0758 0.1041 0.1326 0.1571 0.2143 0.2486 0.2939 0.2536 0.3336 0.1937
1 0 -1.385919 3 1.672511 270.0000 39.55215 0.0466 0.0716 0.1227 0.1482 0.2215 0.2715 0.3334 0.2903 0.3577 0.1957
提前感谢您的任何回复。