我正在尝试在包含具有年度频率的时间序列数据的数据集(~1000 系列)中查找模式。一些样本数据:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18
1 1.0000 0.6154 0.0000 0.0769 0.0000 0.0000 0.0000 0.2308 0.6923 0.6923 0.6923 0.6923 0.6923 0.3846 0.3846 0.0769 0.0769 0.0769
2 1.0000 0.8354 0.5274 0.4451 0.4604 0.4634 0.4543 0.2195 0.0976 0.1159 0.0793 0.0000 0.0152 0.0305 0.0305 0.0335 0.0915 0.0152
3 0.9524 0.8571 0.2381 0.1429 0.6667 1.0000 1.0000 0.1905 0.4286 0.3810 0.3810 0.5714 0.0952 0.1905 0.0000 0.0000 0.0952 0.8571
4 0.9200 1.0000 0.6000 0.4000 0.0000 0.4200 0.3600 0.4400 0.4200 0.3200 0.4800 0.6400 0.5200 0.5200 0.5200 0.5400 0.4800 0.7800
5 0.8372 1.0000 0.7209 0.7907 0.6279 0.6047 0.6047 0.6279 0.5349 0.4419 0.4419 0.2791 0.4419 0.2326 0.1860 0.1860 0.1860 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6154 0.6154 0.6154 0.6154 1.0000
请注意,数据是标准化的,因为我想根据相似的形状对时间序列进行聚类。我想象聚类分析将是一个适当的分析,我尝试使用以下函数对时间序列进行聚类:
a <- factoextra::eclust(Normalized_df, FUNcluster = "kmeans", nstart = 25, k.max = 5)
但是,我有一些观察结果的轮廓宽度为负。有没有办法纠正这些作业?例如,如果值 sil_width 为负,则将观测值放在邻居集群中。可以在下面找到一个示例。
cluster neighbor sil_width
1 1 3 -0.001258464
2 1 3 -0.004661913
3 1 4 -0.010083277
4 1 4 -0.012569472
5 1 3 -0.012793575
6 1 4 -0.013089868
7 1 5 -0.013346165
动机是纠正这些观察结果,以增加集群的平均轮廓宽度。
任何帮助将非常感激!