[TF 1.8] 我正在尝试为玩具聊天机器人构建 seq2seq 模型,以了解 tensorflow 和深度学习。我能够使用采样的 softmax 和波束搜索来训练和运行模型,但随后我尝试使用 tf.contrib.seq2seq.AttentionWrapper 应用 tf.contrib.seq2seq.LuongAttention 我在构建图形时收到以下错误:
ValueError: Dimensions must be equal, but are 384 and 256 for 'rnn/while/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/MatMul_2' (op: 'MatMul') with input shapes: [64,384], [256,512].
这是我的模型:
class ChatBotModel:
def __init__(self, inferring=False, batch_size=1, use_sample_sofmax=True):
"""forward_only: if set, we do not construct the backward pass in the model.
"""
print('Initialize new model')
self.inferring = inferring
self.batch_size = batch_size
self.use_sample_sofmax = use_sample_sofmax
def build_graph(self):
# INPUTS
self.X = tf.placeholder(tf.int32, [None, None])
self.Y = tf.placeholder(tf.int32, [None, None])
self.X_seq_len = tf.placeholder(tf.int32, [None])
self.Y_seq_len = tf.placeholder(tf.int32, [None])
self.gl_step = tf.Variable(
0, dtype=tf.int32, trainable=False, name='global_step')
single_cell = tf.nn.rnn_cell.BasicLSTMCell(128)
keep_prob = tf.cond(tf.convert_to_tensor(self.inferring, tf.bool), lambda: tf.constant(
1.0), lambda: tf.constant(0.8))
single_cell = tf.contrib.rnn.DropoutWrapper(
single_cell, output_keep_prob=keep_prob)
encoder_cell = tf.contrib.rnn.MultiRNNCell([single_cell for _ in range(2)])
# ENCODER
encoder_out, encoder_state = tf.nn.dynamic_rnn(
cell = encoder_cell,
inputs = tf.contrib.layers.embed_sequence(self.X, 10000, 128),
sequence_length = self.X_seq_len,
dtype = tf.float32)
# encoder_state is ((cell0_c, cell0_h), (cell1_c, cell1_h))
# DECODER INPUTS
after_slice = tf.strided_slice(self.Y, [0, 0], [self.batch_size, -1], [1, 1])
decoder_inputs = tf.concat( [tf.fill([self.batch_size, 1], 2), after_slice], 1)
# ATTENTION
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units = 128,
memory = encoder_out,
memory_sequence_length = self.X_seq_len)
# DECODER COMPONENTS
Y_vocab_size = 10000
decoder_cell = tf.contrib.rnn.MultiRNNCell([single_cell for _ in range(2)])
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
cell = decoder_cell,
attention_mechanism = attention_mechanism,
attention_layer_size=128)
decoder_embedding = tf.Variable(tf.random_uniform([Y_vocab_size, 128], -1.0, 1.0))
projection_layer = CustomDense(Y_vocab_size)
if self.use_sample_sofmax:
softmax_weight = projection_layer.kernel
softmax_biases = projection_layer.bias
if not self.inferring:
# TRAINING DECODER
training_helper = tf.contrib.seq2seq.TrainingHelper(
inputs = tf.nn.embedding_lookup(decoder_embedding, decoder_inputs),
sequence_length = self.Y_seq_len,
time_major = False)
decoder_initial_state = decoder_cell.zero_state(self.batch_size, dtype=tf.float32).clone(
cell_state=encoder_state)
training_decoder = tf.contrib.seq2seq.BasicDecoder(
cell = decoder_cell,
helper = training_helper,
initial_state = decoder_initial_state,
output_layer = projection_layer
)
training_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(
decoder = training_decoder,
impute_finished = True,
maximum_iterations = tf.reduce_max(self.Y_seq_len))
training_logits = training_decoder_output.rnn_output
# LOSS
softmax_loss_function = None
if self.use_sample_sofmax:
def sampled_loss(labels, logits):
labels = tf.reshape(labels, [-1, 1])
return tf.nn.sampled_softmax_loss(weights=softmax_weight,
biases=softmax_biases,
labels=labels,
inputs=logits,
num_sampled=64,
num_classes=10000)
softmax_loss_function = sampled_loss
masks = tf.sequence_mask(self.Y_seq_len, tf.reduce_max(self.Y_seq_len), dtype=tf.float32)
self.loss = tf.contrib.seq2seq.sequence_loss(logits = training_logits, targets = self.Y, weights = masks, softmax_loss_function=softmax_loss_function)
# BACKWARD
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
self.train_op = tf.train.AdamOptimizer().apply_gradients(zip(clipped_gradients, params), global_step=self.gl_step)
else:
encoder_states = []
for i in range(2):
if isinstance(encoder_state[i],tf.contrib.rnn.LSTMStateTuple):
encoder_state_c = tf.contrib.seq2seq.tile_batch(encoder_state[i].c, multiplier=2)
encoder_state_h = tf.contrib.seq2seq.tile_batch(encoder_state[i].h, multiplier=2)
encoder_state = tf.contrib.rnn.LSTMStateTuple(c=encoder_state_c, h=encoder_state_h)
encoder_states.append(encoder_state)
encoder_states = tuple(encoder_states)
predicting_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell = decoder_cell,
embedding = decoder_embedding,
start_tokens = tf.tile(tf.constant([2], dtype=tf.int32), [self.batch_size]),
end_token = 3,
initial_state = decoder_initial_state,
beam_width = 2,
output_layer = projection_layer,
length_penalty_weight = 0.0)
predicting_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(
decoder = predicting_decoder,
impute_finished = False,
maximum_iterations = 4 * tf.reduce_max(self.Y_seq_len))
self.predicting_logits = predicting_decoder_output.predicted_ids
追溯几行日志,我看到错误发生在这里:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/rnn_cell_impl.py in call(self, inputs, state)
636
637 gate_inputs = math_ops.matmul(
--> 638 array_ops.concat([inputs, h], 1), self._kernel)
639 gate_inputs = nn_ops.bias_add(gate_inputs, self._bias)
我检查了 LSTM 单元的“h”张量,它的形状为 [batch_size, 128],所以我的猜测是上一个解码步骤的注意力输出与当前编码器的输入连接在一起,使得“输入”具有[batch_size, 256] 的形状,然后将其与 'h' 张量连接以形成 [batch_size, 384] 张量,从而导致此错误。
我的问题是:注意力输出不应该与下一个解码器的输入连接,还是我错过了任何理解?以及如何解决此错误。