0

[TF 1.8] 我正在尝试为玩具聊天机器人构建 seq2seq 模型,以了解 tensorflow 和深度学习。我能够使用采样的 softmax 和波束搜索来训练和运行模型,但随后我尝试使用 tf.contrib.seq2seq.AttentionWrapper 应用 tf.contrib.seq2seq.LuongAttention 我在构建图形时收到以下错误:

ValueError: Dimensions must be equal, but are 384 and 256 for 'rnn/while/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/MatMul_2' (op: 'MatMul') with input shapes: [64,384], [256,512].

这是我的模型:

class ChatBotModel:

def __init__(self, inferring=False, batch_size=1, use_sample_sofmax=True):
    """forward_only: if set, we do not construct the backward pass in the model.
    """
    print('Initialize new model')
    self.inferring = inferring
    self.batch_size = batch_size
    self.use_sample_sofmax = use_sample_sofmax


    def build_graph(self):
        # INPUTS
        self.X = tf.placeholder(tf.int32, [None, None])
        self.Y = tf.placeholder(tf.int32, [None, None])
        self.X_seq_len = tf.placeholder(tf.int32, [None])
        self.Y_seq_len = tf.placeholder(tf.int32, [None])


        self.gl_step = tf.Variable(
                      0, dtype=tf.int32, trainable=False, name='global_step')

        single_cell = tf.nn.rnn_cell.BasicLSTMCell(128)
        keep_prob = tf.cond(tf.convert_to_tensor(self.inferring, tf.bool), lambda: tf.constant(
            1.0), lambda: tf.constant(0.8))
        single_cell = tf.contrib.rnn.DropoutWrapper(
            single_cell, output_keep_prob=keep_prob)
        encoder_cell = tf.contrib.rnn.MultiRNNCell([single_cell for _ in range(2)])

        # ENCODER         
        encoder_out, encoder_state = tf.nn.dynamic_rnn(
            cell = encoder_cell, 
            inputs = tf.contrib.layers.embed_sequence(self.X, 10000, 128),
            sequence_length = self.X_seq_len,
            dtype = tf.float32)
        # encoder_state is ((cell0_c, cell0_h), (cell1_c, cell1_h))

        # DECODER INPUTS
        after_slice = tf.strided_slice(self.Y, [0, 0], [self.batch_size, -1], [1, 1])
        decoder_inputs = tf.concat( [tf.fill([self.batch_size, 1], 2), after_slice], 1)

        # ATTENTION
        attention_mechanism = tf.contrib.seq2seq.LuongAttention(
            num_units = 128, 
            memory = encoder_out,
            memory_sequence_length = self.X_seq_len)

        # DECODER COMPONENTS
        Y_vocab_size = 10000
        decoder_cell = tf.contrib.rnn.MultiRNNCell([single_cell for _ in range(2)])
        decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
            cell = decoder_cell,
            attention_mechanism = attention_mechanism,
            attention_layer_size=128)
        decoder_embedding = tf.Variable(tf.random_uniform([Y_vocab_size, 128], -1.0, 1.0))
        projection_layer = CustomDense(Y_vocab_size)
        if self.use_sample_sofmax:
            softmax_weight = projection_layer.kernel
            softmax_biases = projection_layer.bias

        if not self.inferring:
            # TRAINING DECODER
            training_helper = tf.contrib.seq2seq.TrainingHelper(
                inputs = tf.nn.embedding_lookup(decoder_embedding, decoder_inputs),
                sequence_length = self.Y_seq_len,
                time_major = False)

            decoder_initial_state = decoder_cell.zero_state(self.batch_size, dtype=tf.float32).clone(
                cell_state=encoder_state)

            training_decoder = tf.contrib.seq2seq.BasicDecoder(
                cell = decoder_cell,
                helper = training_helper,
                initial_state = decoder_initial_state,
                output_layer = projection_layer
            )
            training_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(
                decoder = training_decoder,
                impute_finished = True,
                maximum_iterations = tf.reduce_max(self.Y_seq_len))
            training_logits = training_decoder_output.rnn_output

            # LOSS
            softmax_loss_function = None
            if self.use_sample_sofmax:
                def sampled_loss(labels, logits):
                    labels = tf.reshape(labels, [-1, 1])
                    return tf.nn.sampled_softmax_loss(weights=softmax_weight,
                                                      biases=softmax_biases,
                                                      labels=labels,
                                                      inputs=logits,
                                                      num_sampled=64,
                                                      num_classes=10000)
                softmax_loss_function = sampled_loss

            masks = tf.sequence_mask(self.Y_seq_len, tf.reduce_max(self.Y_seq_len), dtype=tf.float32)
            self.loss = tf.contrib.seq2seq.sequence_loss(logits = training_logits, targets = self.Y, weights = masks, softmax_loss_function=softmax_loss_function)

            # BACKWARD
            params = tf.trainable_variables()
            gradients = tf.gradients(self.loss, params)
            clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
            self.train_op = tf.train.AdamOptimizer().apply_gradients(zip(clipped_gradients, params), global_step=self.gl_step)
        else:
            encoder_states = []
            for i in range(2):
                if isinstance(encoder_state[i],tf.contrib.rnn.LSTMStateTuple):
                    encoder_state_c = tf.contrib.seq2seq.tile_batch(encoder_state[i].c, multiplier=2)
                    encoder_state_h = tf.contrib.seq2seq.tile_batch(encoder_state[i].h, multiplier=2)
                    encoder_state = tf.contrib.rnn.LSTMStateTuple(c=encoder_state_c, h=encoder_state_h)
                encoder_states.append(encoder_state)
            encoder_states = tuple(encoder_states)

            predicting_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
                cell = decoder_cell,
                embedding = decoder_embedding,
                start_tokens = tf.tile(tf.constant([2], dtype=tf.int32), [self.batch_size]),
                end_token = 3,
                initial_state = decoder_initial_state,
                beam_width = 2,
                output_layer = projection_layer,
                length_penalty_weight = 0.0)
            predicting_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(
                decoder = predicting_decoder,
                impute_finished = False,
                maximum_iterations = 4 * tf.reduce_max(self.Y_seq_len))
            self.predicting_logits = predicting_decoder_output.predicted_ids

追溯几行日志,我看到错误发生在这里:

/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/rnn_cell_impl.py in call(self, inputs, state)
    636 
    637     gate_inputs = math_ops.matmul(
--> 638         array_ops.concat([inputs, h], 1), self._kernel)
    639     gate_inputs = nn_ops.bias_add(gate_inputs, self._bias)

我检查了 LSTM 单元的“h”张量,它的形状为 [batch_size, 128],所以我的猜测是上一个解码步骤的注意力输出与当前编码器的输入连接在一起,使得“输入”具有[batch_size, 256] 的形状,然后将其与 'h' 张量连接以形成 [batch_size, 384] 张量,从而导致此错误。

我的问题是:注意力输出不应该与下一个解码器的输入连接,还是我错过了任何理解?以及如何解决此错误。

4

1 回答 1

0

您可能已经找到了答案,但对于同样遇到此错误的窥视者(如我),请关注第二个形状。它指定 [256,512]。现在打开“rnn_cell_impl.py”的代码并转到发生 concat 操作的行。您会注意到内核形状被报告为与您的解码器输入不同步(其中 num_units+attention_layer_size 作为第一个维度,第 0 个是您的 batch_size)。

基本上,您也在使用为解码器中的编码器单元创建的相同单元(它是一个 2 层 lstm,有 128 对吗?)因此内核大小显示为 256,512。为了解决这个问题,在这两个之间的行中,添加

Y_vocab_size = 10000
## create new decoder base rnn cell 
decode_op_cell = tf.nn.rnn_cell.BasicLSTMCell(128)
## create new decoder base rnn cell
decoder_cell = tf.contrib.rnn.MultiRNNCell([decode_op_cell for _ in range(2)])

现在,如果您可以在给您错误的同一行中可视化代码,您将看到 [64, 384] 和 [384, 512] (这是一个合法的 mat mul op,应该可以修复您的错误)当然,无论 dropout等你想添加,也可以随意添加到这个 decode_op_cell 中。

于 2018-10-15T09:25:36.000 回答