下面是使用 kafka 进行火花流式传输的代码。在这里,我试图将批处理的密钥作为 Dstream 获取,然后将其转换为 LIST。为了对其进行迭代并将与每个键有关的数据放在以该键命名的 hdfs 文件夹中。
关键基本上是 - Schema.Table_name
val ssc = new StreamingContext(sparkConf, Seconds(args{7}.toLong)) // configured to run for every 60 seconds
val warehouseLocation="Spark-warehouse"
val spark = SparkSession.builder.config(sparkConf).getOrCreate()
import spark.implicits._
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> conf.getString("kafka.brokers"),
"zookeeper.connect" -> conf.getString("kafka.zookeeper"),
"group.id" -> conf.getString("kafka.consumergroups"),
"auto.offset.reset" -> args { 1 },
"enable.auto.commit" -> (conf.getString("kafka.autoCommit").toBoolean: java.lang.Boolean),
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"security.protocol" -> "SASL_PLAINTEXT",
"session.timeout.ms" -> args { 2 },
"max.poll.records" -> args { 3 },
"request.timeout.ms" -> args { 4 },
"fetch.max.wait.ms" -> args { 5 })
val messages = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.
Subscribe[String, String](topicsSet, kafkaParams))
提取密钥,但它是 DStream[String] 类型
val keys = messages.map(x=>(x.key()))
var final_list_of_keys = List[String]()
将其转换为列表并更新 var final_list_of_keys
keys.foreachRDD( rdd => {
val df_keys = spark.read.json(rdd).distinct().toDF().persist(StorageLevel.MEMORY_ONLY)
df_keys.show()
val comma_separated_keys= df_keys.distinct().collect().mkString("").replace("[","").replace("]",",")
final_list_of_keys= comma_separated_keys.split(",").toList
现在尝试遍历列表。
for ( i <- final_list_of_keys)
{
println(i)
val message1 = messages.filter(x => x.key().toString().equals(i)).map(x=>x.value()).persist(StorageLevel.MEMORY_ONLY) //.toString())
message1.foreachRDD((rdd, batchTime) => {
if (!rdd.isEmpty())
{
val df1 = spark.read.json(rdd).persist(StorageLevel.MEMORY_ONLY) //.withColumn("pharmacy_location",lit(args{6}))
val df2=df1.withColumn("message",struct( struct($"message.data.*",lit(args{6}).as("pharmacy_location")).alias("data"), struct($"message.headers.*").as("headers"))).persist(StorageLevel.MEMORY_ONLY)
val df3= df2.drop("headers").drop("messageSchema").drop("messageSchemaId").persist(StorageLevel.MEMORY_ONLY)
df3.coalesce(1).write.json(conf.getString("hdfs.streamoutpath1")+ PATH_SEPERATOR + i + PATH_SEPERATOR + args{6}+ PATH_SEPERATOR+ date_today.format(System.currentTimeMillis())
+ PATH_SEPERATOR + date_today_hour.format(System.currentTimeMillis()) + PATH_SEPERATOR + System.currentTimeMillis())
df1.unpersist
df2.unpersist()
df3.unpersist()
}
})
try
{
messages.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
messages.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges) // push it back
}
}
catch
{
case e: BlockMissingException => e.printStackTrace()
case e: IOException => e.printStackTrace()
case e:Throwable => e.printStackTrace()
}
}
ssc.start()
ssc.awaitTermination()
但我收到错误 - 不支持在启动上下文后添加新的输入、转换和输出操作
当我尝试将 for 循环保留在 keys.foreachRdd 之外的列表中时,列表不会更新并保持为空。
有人可以建议我如何实际重做此代码以将键放在列表中,然后检查它们以将数据放入正确的目录中。
根据我的研究,我看到了帖子-
另外,当我使用地图时,在 foreachRdd 中过滤,然后在其中过滤另一个 foreachRdd 可能会导致问题。参考帖子 -使用类似代码的帖子