我想将一个大火花数据框转换为超过 1000000 行的 Pandas。我尝试使用以下代码将 spark 数据帧转换为 Pandas 数据帧:
spark.conf.set("spark.sql.execution.arrow.enabled", "true")
result.toPandas()
但是,我得到了错误:
TypeError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/pyspark/sql/dataframe.py in toPandas(self)
1949 import pyarrow
-> 1950 to_arrow_schema(self.schema)
1951 tables = self._collectAsArrow()
/usr/local/lib/python3.6/dist-packages/pyspark/sql/types.py in to_arrow_schema(schema)
1650 fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable)
-> 1651 for field in schema]
1652 return pa.schema(fields)
/usr/local/lib/python3.6/dist-packages/pyspark/sql/types.py in <listcomp>(.0)
1650 fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable)
-> 1651 for field in schema]
1652 return pa.schema(fields)
/usr/local/lib/python3.6/dist-packages/pyspark/sql/types.py in to_arrow_type(dt)
1641 else:
-> 1642 raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
1643 return arrow_type
TypeError: Unsupported type in conversion to Arrow: VectorUDT
During handling of the above exception, another exception occurred:
RuntimeError Traceback (most recent call last)
<ipython-input-138-4e12457ff4d5> in <module>()
1 spark.conf.set("spark.sql.execution.arrow.enabled", "true")
----> 2 result.toPandas()
/usr/local/lib/python3.6/dist-packages/pyspark/sql/dataframe.py in toPandas(self)
1962 "'spark.sql.execution.arrow.enabled' is set to true. Please set it to false "
1963 "to disable this.")
-> 1964 raise RuntimeError("%s\n%s" % (_exception_message(e), msg))
1965 else:
1966 pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns)
RuntimeError: Unsupported type in conversion to Arrow: VectorUDT
Note: toPandas attempted Arrow optimization because 'spark.sql.execution.arrow.enabled' is set to true. Please set it to false to disable this.
它不起作用,但如果我将箭头设置为 false,它就会起作用。但它太慢了......有什么想法吗?