我正在尝试在 TensorFlow 代码中使用预训练的 Keras 模型,如本 Keras 博客文章第 II 节下所述:将 Keras 模型与 TensorFlow 结合使用。
我想使用 Keras 中可用的预训练 VGG16 网络从图像中提取卷积特征图,并在其上添加我自己的 TensorFlow 代码。所以我这样做了:
import tensorflow as tf
from tensorflow.python.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.python.keras import backend as K
# images = a NumPy array containing 8 images
model = VGG16(include_top=False, weights='imagenet')
inputs = tf.placeholder(shape=images.shape, dtype=tf.float32)
inputs = preprocess_input(inputs)
features = model(inputs)
with tf.Session() as sess:
K.set_session(sess)
output = sess.run(features, feed_dict={inputs: images})
print(output.shape)
但是,这给了我一个错误:
FailedPreconditionError: Attempting to use uninitialized value block1_conv1_2/kernel
[[Node: block1_conv1_2/kernel/read = Identity[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"](block1_conv1_2/kernel)]]
[[Node: vgg16_1/block5_pool/MaxPool/_3 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_132_vgg16_1/block5_pool/MaxPool", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
相反,如果我在运行网络之前运行初始化操作:
with tf.Session() as sess:
K.set_session(sess)
tf.global_variables_initializer().run()
output = sess.run(features, feed_dict={inputs: images})
print(output.shape)
然后我得到预期的输出:
(8, 11, 38, 512)
我的问题是,在运行时tf.global_variables_initializer()
,变量是随机初始化的还是使用 ImageNet 权重初始化的?我问这个是因为上面引用的博文没有提到在使用预训练的 Keras 模型时需要运行初始化程序,这确实让我感到有些不安。
我怀疑它确实使用了 ImageNet 权重,并且只需要运行初始化程序,因为 TensorFlow 需要显式初始化所有变量。但这只是一个猜测。