5

我已经建立了递归函数来计算帕斯卡的三角形值。

有没有办法优化它?

关于帕斯卡三角形的简短提醒:C(n, k) = C(n-1, k-1) + C(n-1, k) 我的代码是:

int Pascal(int n, int k) {
if (k == 0) return 1;
if (n == 0) return 0;
return Pascal(n - 1, k - 1) + Pascal(n - 1, k);
}

我看到的低效率是它存储一些值两次。示例:C(6,2) = C(5,1) + C(5,2) C(6,2) = C(4,0) + C(4,1) + C(4,1) + C(4,2) 它将调用 C(4,1) 两次

知道如何优化此功能吗?

谢谢

4

2 回答 2

9

以下例程将使用递归定义和记忆来计算 n-choose-k。该例程非常快速和准确:

inline unsigned long long n_choose_k(const unsigned long long& n,
                                     const unsigned long long& k)
{
   if (n  < k) return 0;
   if (0 == n) return 0;
   if (0 == k) return 1;
   if (n == k) return 1;
   if (1 == k) return n;

   typedef unsigned long long value_type;

   class n_choose_k_impl
   {
   public:

      n_choose_k_impl(value_type* table,const value_type& dimension)
      : table_(table),
      dimension_(dimension / 2)
      {}

      inline value_type& lookup(const value_type& n, const value_type& k)
      {
         const std::size_t difference = static_cast<std::size_t>(n - k);
         return table_[static_cast<std::size_t>((dimension_ * n) + ((k < difference) ? k : difference))];
      }

      inline value_type compute(const value_type& n, const value_type& k)
      {
         // n-Choose-k = (n-1)-Choose-(k-1) + (n-1)-Choose-k
         if ((0 == k) || (k == n))
            return 1;
         value_type v1 = lookup(n - 1,k - 1);
         if (0 == v1)
            v1 = lookup(n - 1,k - 1) = compute(n - 1,k - 1);
         value_type v2 = lookup(n - 1,k);
         if (0 == v2)
            v2 = lookup(n - 1,k) = compute(n - 1,k);
         return v1 + v2;
      }

      value_type* table_;
      const value_type dimension_;
   };

   static const std::size_t static_table_dim = 100;
   static const std::size_t static_table_size = static_cast<std::size_t>((static_table_dim * static_table_dim) / 2);
   static value_type static_table[static_table_size];
   static bool static_table_initialized = false;

   if (!static_table_initialized && (n <= static_table_dim))
   {
      std::fill_n(static_table,static_table_size,0);
      static_table_initialized = true;
   }

   const std::size_t table_size = static_cast<std::size_t>(n * (n / 2) + (n & 1));

   unsigned long long dimension = static_table_dim;
   value_type* table = 0;

   if (table_size <= static_table_size)
      table = static_table;
   else
   {
      dimension = n;
      table = new value_type[table_size];
      std::fill_n(table,table_size,0LL);
   }

   value_type result = n_choose_k_impl(table,dimension).compute(n,k);

   if (table != static_table)
      delete [] table;

   return result;
}
于 2011-02-24T03:06:59.223 回答
7

保留一个先前返回结果的表格(由它们的nk值索引);那里使用的技术是记忆。您还可以将递归更改为迭代并使用动态编程来填充包含三角形的数组nk小于您尝试评估的值的数组,然后从中获取一个元素。

于 2011-02-23T19:52:52.420 回答