1

使用 RFE,您可以获得特征的重要性等级,但现在我只能使用包内的模型和参数,如:lmFuncs(linear model),rfFuncs(random forest) 似乎

caretFuncs

可以为自己的模型和参数做一些自定义设置,但我不知道细节,正式文件没有详细说明,我想将svm和gbm应用于这个RFE过程,因为这是我使用的当前模型训练,有人知道吗?

4

1 回答 1

7

我试图根据文档重新创建工作示例。您正确识别了 的使用caretFuncs,然后您可以在调用中设置模型参数rfe(您也可以定义trainControl对象等)。

# load caret
library(caret)

# load data, get target and feature column labels
data(iris)
col_names = names(iris);target = "Species"
feature_names = col_names[col_names!=target]

# construct rfeControl object
rfe_control = rfeControl(functions = caretFuncs, #caretFuncs here
                     method="cv",
                     number=5)

# construct trainControl object for your train method 
fit_control = trainControl(classProbs=T,
                        search="random")

# get results
rfe_fit = rfe(iris[,feature_names], iris[,target],
             sizes = 1:4,
             rfeControl = rfe_control,
             method="svmLinear",
             # additional arguments to train method here
             trControl=fit_control)

如果您想更深入地研究这个问题,您可能需要访问下面的链接。

rfe带有基本代码片段的文档:
https ://www.rdocumentation.org/packages/caret/versions/6.0-80/topics/rfe

caret文档rfe
https ://topepo.github.io/caret/recursive-feature-elimination.html

希望这可以帮助!

于 2018-09-30T21:16:07.443 回答