1

是否可以构建一个“简单”的固定滚动窗口?假设我有以下数据集:

         Apple Microsoft     Tesla    Amazon
 2010 0.8533719 0.8078440 0.2620114 0.1869552
 2011 0.7462573 0.5127501 0.5452448 0.1369686
 2012 0.7580671 0.5062639 0.7847919 0.8362821
 2013 0.3154078 0.6960258 0.7303597 0.6057027
 2014 0.4741735 0.3906580 0.4515726 0.1396147
 2015 0.4230036 0.4728911 0.1262413 0.7495193
 2016 0.2396552 0.5001825 0.6732861 0.8535837
 2017 0.2007575 0.8875209 0.5086837 0.2211072
#I want to be able to produce the following result
s.matrix <- x[1:4,] 
#For the next period, I want to drop the first period and add the next period: 
s.matrix <- x[2:5,] 
#For the rest of the dataset it should be:
 x[3:6,], x[4:7,], x[5:8,]
#That is, the width should always be equal to four. 

我知道 lapply 能够做类似的事情,但是我必须设置一个固定值,以便它只将新变量添加到已经存在的矩阵中而不删除第一个观察结果......或者我错了吗?

4

1 回答 1

2

假设x是一个data.frame,如最后的注释,rollapply用于获取所需的索引并apply生成相应的数据帧列表。

library(zoo)

apply(rollapply(1:nrow(x), 4, c), 1, function(ix) x[ix, ])

给予:

[[1]]
       Apple Microsoft   Tesla  Amazon
2010 0.85337   0.80784 0.26201 0.18696
2011 0.74626   0.51275 0.54524 0.13697
2012 0.75807   0.50626 0.78479 0.83628
2013 0.31541   0.69603 0.73036 0.60570

[[2]]
       Apple Microsoft   Tesla  Amazon
2011 0.74626   0.51275 0.54524 0.13697
2012 0.75807   0.50626 0.78479 0.83628
2013 0.31541   0.69603 0.73036 0.60570
2014 0.47417   0.39066 0.45157 0.13961

[[3]]
       Apple Microsoft   Tesla  Amazon
2012 0.75807   0.50626 0.78479 0.83628
2013 0.31541   0.69603 0.73036 0.60570
2014 0.47417   0.39066 0.45157 0.13961
2015 0.42300   0.47289 0.12624 0.74952

[[4]]
       Apple Microsoft   Tesla  Amazon
2013 0.31541   0.69603 0.73036 0.60570
2014 0.47417   0.39066 0.45157 0.13961
2015 0.42300   0.47289 0.12624 0.74952
2016 0.23966   0.50018 0.67329 0.85358

[[5]]
       Apple Microsoft   Tesla  Amazon
2014 0.47417   0.39066 0.45157 0.13961
2015 0.42300   0.47289 0.12624 0.74952
2016 0.23966   0.50018 0.67329 0.85358
2017 0.20076   0.88752 0.50868 0.22111

笔记

我们将其用于x

Lines <- "         Apple Microsoft     Tesla    Amazon
 2010 0.8533719 0.8078440 0.2620114 0.1869552
 2011 0.7462573 0.5127501 0.5452448 0.1369686
 2012 0.7580671 0.5062639 0.7847919 0.8362821
 2013 0.3154078 0.6960258 0.7303597 0.6057027
 2014 0.4741735 0.3906580 0.4515726 0.1396147
 2015 0.4230036 0.4728911 0.1262413 0.7495193
 2016 0.2396552 0.5001825 0.6732861 0.8535837
 2017 0.2007575 0.8875209 0.5086837 0.2211072"

x <- read.table(text = Lines)
于 2018-06-01T14:52:21.453 回答