我正在 Keras 中训练生成对抗网络 (GAN)。
我的日志报告说两个网络(鉴别器和组合模型)都达到了 100% 的准确率。这表明有问题。
我尝试运行推理,发现鉴别器确实是 100% 准确的,但生成器只产生噪声,根本没有欺骗鉴别器。
我的问题:为什么 Keras 将我的组合模型的准确率报告为 100%?
代码:
generator = create_generator(input_shape=(374,))
in_vector = Input(shape=(374,))
fake_images = generator(in_vector)
discriminator = create_discriminator()
disc_optimizer = keras.optimizers.SGD(lr=1e-4)
discriminator.compile(optimizer=disc_optimizer, loss='binary_crossentropy', metrics=['accuracy'])
discriminator.trainable = False
for l in discriminator.layers:
l.trainable = False
gan_output = discriminator(fake_images)
gan = Model(in_vector, gan_output)
gan_optimizer = keras.optimizers.RMSprop(lr=1e-5)
gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy', metrics=['accuracy'])
start_time = datetime.datetime.now()
tensorboard = TensorBoard(log_dir=f'data/logs/gawwn/{start_time}')
tensorboard.set_model(gan)
d_train_logs = ['train_discriminator_loss',
'train_discriminator_accuracy']
g_train_logs = ['train_generator_loss',
'train_generator_accuracy']
val_logs = ['val_discriminator_loss',
'val_discriminator_accuracy',
'val_generator_loss',
'val_generator_accuracy']
d_train_step, g_train_step, val_step = 0, 0, 0
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
noise_sigma = 0.00
noise_decay = 0.95
for epoch in range(1, 1 + epochs):
d_loss = [1]
while d_loss[0] > d_loss_thres:
for i, (x_vectors, x_images, y) in enumerate(train_loader.load_batch(batch_size)):
# ---------------------
# Train Discriminator
# ---------------------
# Generate a batch of new images
gen_imgs = generator.predict(x_vectors)
# Train the discriminator
data = np.concatenate([y, gen_imgs], axis=0)
labels = np.concatenate([valid[:len(y)], fake[:len(y)]])
train_batch = list(zip(data, labels))
np.random.shuffle(train_batch)
data, labels = zip(*train_batch)
data, labels = np.array(data), np.array(labels)
d_loss = discriminator.train_on_batch(data, labels)
# d_loss_real = discriminator.train_on_batch(y, valid[:len(y)])
# d_loss_fake = discriminator.train_on_batch(gen_imgs, fake[:len(y)])
# d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
write_log(tensorboard, d_train_logs, d_loss, d_train_step)
d_train_step += 1
time_elaped = datetime.datetime.now() - start_time
print(f'D step {d_train_step}: loss={d_loss[0]}; acc={d_loss[1]}; time={time_elaped}')
g_loss = [1]
while g_loss[0] > g_loss_thres:
for i, (x_vectors, x_images, y) in enumerate(train_loader.load_batch(batch_size)):
# ---------------------
# Train Generator
# ---------------------
# Train the generator (to have the discriminator label samples as valid)
g_loss = gan.train_on_batch(x_vectors, valid[:len(y)])
# Plot the progress
write_log(tensorboard, g_train_logs, g_loss, g_train_step)
g_train_step += 1
time_elaped = datetime.datetime.now() - start_time
print(f'G step {g_train_step}: loss={g_loss[0]}; acc={g_loss[1]}; time={time_elaped}')
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
d_losses = []
g_losses = []
for x_vectors, x_images, y in val_loader.load_batch(batch_size):
gen_imgs = generator.predict(x_vectors)
d_loss_real = discriminator.test_on_batch(y, valid[:len(y)])
d_loss_fake = discriminator.test_on_batch(gen_imgs, fake[:len(y)])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
d_losses.append(d_loss)
g_loss = gan.test_on_batch(x_vectors, valid[:len(y)])
g_losses.append(g_loss)
d_loss = np.average(d_losses, axis=0)
g_loss = np.average(g_losses, axis=0)
write_log(tensorboard, val_logs, [d_loss[0], d_loss[1], g_loss[0], g_loss[1]], val_step)
val_step += 1
sample_images(val_loader, generator, epoch)
save_model(generator, epoch, 'generator')
save_model(discriminator, epoch, 'discriminator')
最后几个步骤的结果:
D step 349: loss=0.09932675957679749; acc=1.0; time=0:05:58.468997
D step 350: loss=0.10563915222883224; acc=0.9900000095367432; time=0:05:59.088657
D step 351: loss=0.09658461064100266; acc=1.0; time=0:05:59.533442
G step 214: loss=0.167491614818573; acc=0.9800000190734863; time=0:06:00.196747
G step 215: loss=0.13409791886806488; acc=1.0; time=0:06:00.891946
G step 216: loss=0.1523411124944687; acc=0.9722222089767456; time=0:06:01.402974
D step 352: loss=0.10553492605686188; acc=0.9900000095367432; time=0:06:02.015083
D step 353: loss=0.10318870842456818; acc=0.9900000095367432; time=0:06:02.654599
D step 354: loss=0.07871382683515549; acc=1.0; time=0:06:03.131933
G step 217: loss=0.1493617743253708; acc=0.9800000190734863; time=0:06:03.827815
G step 218: loss=0.12147567421197891; acc=0.9599999785423279; time=0:06:04.537494
G step 219: loss=0.17327196896076202; acc=1.0; time=0:06:05.099841
D step 355: loss=0.10441411286592484; acc=0.9900000095367432; time=0:06:05.768096
D step 356: loss=0.09612423181533813; acc=1.0; time=0:06:06.451947
D step 357: loss=0.1072489321231842; acc=0.9861111044883728; time=0:06:06.937882
推理:
>>> np.reshape(discriminator.predict(ground_truth), (5, 10))
array([[0.5296475 , 0.52787906, 0.5270807 , 0.5260455 , 0.528732 ,
0.52820367, 0.53157693, 0.52730876, 0.5244186 , 0.52673554],
[0.5229454 , 0.5239704 , 0.53051734, 0.52862865, 0.52718925,
0.52680767, 0.52621156, 0.5308223 , 0.52489233, 0.5297055 ],
[0.53033316, 0.5260847 , 0.5300899 , 0.52788675, 0.529595 ,
0.52183014, 0.5321261 , 0.5251559 , 0.52876014, 0.52384466],
[0.528658 , 0.52737784, 0.53003156, 0.52685475, 0.53047454,
0.52759105, 0.52710444, 0.52546424, 0.52709824, 0.52520245],
[0.5283209 , 0.52810913, 0.52451426, 0.5196351 , 0.5299184 ,
0.5274567 , 0.52686375, 0.5269972 , 0.5248108 , 0.5263274 ]],
dtype=float32)
>>> np.reshape(gan.predict(input_vector), (5, 10))
array([[0.4719111 , 0.47217596, 0.47209665, 0.47233126, 0.4741753 ,
0.4712048 , 0.4721919 , 0.47193947, 0.47010162, 0.47092766],
[0.47291884, 0.47334394, 0.4714141 , 0.46976995, 0.47092718,
0.47233835, 0.47164065, 0.47276756, 0.47107005, 0.47187868],
[0.47153524, 0.47157907, 0.4706026 , 0.47128928, 0.47320494,
0.47089615, 0.47108623, 0.47432283, 0.47186196, 0.47404772],
[0.47164053, 0.47348404, 0.4701542 , 0.4741918 , 0.4702833 ,
0.47303212, 0.4726331 , 0.47118646, 0.47191456, 0.47318774],
[0.47043982, 0.47027725, 0.47308347, 0.47376725, 0.4733549 ,
0.47157207, 0.47205287, 0.47177386, 0.47119975, 0.4707804 ]],
dtype=float32)