我正在使用 Keras 训练一个 LSTM 模型,并希望在其上添加 Attention。我是 Keras 的新手,注意。来自链接How to add an attention mechanism in keras? 我学会了如何在我的 LSTM 层上增加注意力并制作了这样的模型
print('Defining a Simple Keras Model...')
lstm_model=Sequential() # or Graph
lstm_model.add(Embedding(output_dim=300,input_dim=n_symbols,mask_zero=True,
weights=[embedding_weights],input_length=input_length))
# Adding Input Length
lstm_model.add(Bidirectional(LSTM(300)))
lstm_model.add(Dropout(0.3))
lstm_model.add(Dense(1,activation='sigmoid'))
# compute importance for each step
attention=Dense(1, activation='tanh')
attention=Flatten()
attention=Activation('softmax')
attention=RepeatVector(64)
attention=Permute([2, 1])
sent_representation=keras.layers.Add()([lstm_model,attention])
sent_representation=Lambda(lambda xin: K.sum(xin, axis=-2),output_shape=(64))(sent_representation)
sent_representation.add(Dense(1,activation='sigmoid'))
rms_prop=RMSprop(lr=0.001,rho=0.9,epsilon=None,decay=0.0)
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
print('Compiling the Model...')
sent_representation.compile(loss='binary_crossentropy',optimizer=adam,metrics=['accuracy'])
#class_mode='binary')
earlyStopping=EarlyStopping(monitor='val_loss',min_delta=0,patience=0,
verbose=0,mode='auto')
print("Train...")
sent_representation.fit(X_train, y_train,batch_size=batch_size,nb_epoch=20,
validation_data=(X_test,y_test),callbacks=[earlyStopping])
输出将是 0/1 的情绪分析。为此,我添加了一个
sent_representation.add(Dense(1,activation='sigmoid'))
让它给出一个二进制结果。
这是我们在运行代码时遇到的错误:
ERROR:
File "<ipython-input-6-50a1a221497d>", line 18, in <module>
sent_representation=keras.layers.Add()([lstm_model,attention])
File "C:\Users\DuttaHritwik\Anaconda3\lib\site-packages\keras\engine\topology.py", line 575, in __call__
self.assert_input_compatibility(inputs)
File "C:\Users\DuttaHritwik\Anaconda3\lib\site-packages\keras\engine\topology.py", line 448, in assert_input_compatibility
str(inputs) + '. All inputs to the layer '
ValueError: Layer add_1 was called with an input that isn't a symbolic tensor. Received type: <class 'keras.models.Sequential'>. Full input: [<keras.models.Sequential object at 0x00000220B565ED30>, <keras.layers.core.Permute object at 0x00000220FE853978>]. All inputs to the layer should be tensors.
你能看看并告诉我们我们在这里做错了什么吗?