我正在为 sklearn 分类模型创建一个带有破折号的仪表板。我想绘制 roc 曲线和一些指标来评估模型(如图所示)。
问题是破折号不允许超过一个输出,所以我有两个解决方案:
我再次生成模型(这将花费大量时间)
或者只是使用 pickle 来保存 sklearn 生成的模型。但是当我加载腌制模型时,结果与图像中显示的结果不同,例如:原始 AUC(曲线下面积)=0.7 和来自选取的文件 =0.93。我尝试对 joblib 做同样的事情,但同样的问题。
请原谅我这是一个代码示例,因为它很长:
@app.callback(Output('modelReport', 'rows'),
[Input('report', 'n_clicks'),
Input('model', 'value'),])
def modelClassifierReport (button, mod):
if (button ==None):
return [{}]
else:
## saving and generating models ###
if (mod == 'logreg'):
Title='Logistic regression'
logreg = LogisticRegression()
logreg.fit(x_train,y_train)
model=logreg
with open("python_logreg_model.pkl", "wb") as file_handler:
pickle.dump(logreg, file_handler)
elif (mod =='mlp' ):
mlp=MLPClassifier()
mlp=mlp.fit(x_train, y_train)
with open("python_mlp_model.pkl", "wb") as file_handler:
pickle.dump(mlp, file_handler)
model=mlp
elif :
.......#other models#
####------------###
#### comput indicator to evaluate models ####
####------------###
report=pd.DataFrame({'creteria':['Accuracy','erreur I','erreurII' ,'AUC','CV ACU','AIC','som error']})
report['Value']=[model_score,fnr,fpr,AUC, cv_mean,AIC,RSS]
return report.to_dict('records')
#####################
@app.callback(Output('my-graph', 'figure'),
[Input ('roc','n_clicks'),])
def RocPlot (button):
if (button ==None):
return [{}]
else:
### loading models
if(mod == 'logreg'):
with open("python_logreg_model.pkl", "rb") as file_handler:
model = pickle.load(file_handler)
elif (mod=='mlp' ):
with open("python_mlp_model.pkl", "rb") as file_handler:
model = pickle.load(file_handler)
#### load other models ####
####------------###
####------------###
fp, tp, threshold= metrics.roc_curve(y_test, model.predict_proba(x_test)[:,1])
AUC= metrics.auc(fp, tp)
lw = 2
trace1 = go.Scatter(x=fp, y=tp,
mode='lines',
line=dict(color='darkorange', width=lw),
name='ROC curve (area = %0.2f)' % AUC )
trace2 = go.Scatter(x=[0, 1], y=[0, 1],
mode='lines',
line=dict(color='navy', width=lw, dash='dash'),
showlegend=False)
layout = go.Layout(title='Receiver operating characteristic example',
xaxis=dict(title='False Positive Rate'),
yaxis=dict(title='True Positive Rate'))
print('plot done')
return{ 'data': [trace1, trace2], 'layout': layout }
我如何用腌制模型解决这个问题?还有其他方法可以保存 sklearn 模型吗?有什么建议吗?