我有一个关于从 tensorflow.contrib.slim.nets 的 vgg 中排除前两层的问题。
如您所知 tensorflow.contrib.slim.nets.vgg,
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
net = slim.fully_connected(net, 4096, scope='fc6')
net = slim.dropout(net, 0.5, scope='dropout6')
net = slim.fully_connected(net, 4096, scope='fc7')
net = slim.dropout(net, 0.5, scope='dropout7')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
return net
我想要的是net = slim.fully_connected(net, 4096, scope='fc7')的输出,而不是net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
那么无论如何要从中删除 dropout7 和 fc8 吗?
这是一个使用 tf.slim 的 vgg 的简单代码;请让我知道如何在此示例中删除这些内容。
import tensorflow as tf
import tensorflow.contrib.slim.nets as nets
import cv2
import numpy as np
slim = tf.contrib.slim
vgg = nets.vgg
image = cv2.imread('girl.jpg')
image = cv2.resize(image, (224, 224))
image = np.reshape(image, (1, 224, 224, 3)).astype(float)
predictions, _ = vgg.vgg_16(image) # the 'predictions' is not I want.