我想用它tf.nn.conv2d_transpose
来为 GAN 网络构建一个反卷积层。
我想创建一个函数deconv_layer
。它生成一个新层,该层输出的filter_num
过滤器expand_size
的分辨率是输入的倍数。
我的代码是:
def deconv_layer(x, filter_num, kernel_size=5, expand_size=2):
x_shape = x.get_shape().as_list()
with tf.name_scope('deconv_'+str(filter_num)):
size_in = x_shape[-1]
size_out = filter_num
w = tf.Variable(tf.random_normal([kernel_size, kernel_size, size_in, size_out], mean=0.0, stddev=0.125), name="W")
b = tf.Variable(tf.random_normal([size_out], mean=0.0, stddev=0.125), name="B")
conv = tf.nn.conv2d_transpose(x, w, output_shape=[-1, x_shape[-3]*expand_size, x_shape[-2]*expand_size, filter_num], strides=[1,expand_size,expand_size,1], padding="SAME")
act = tf.nn.relu(tf.nn.bias_add(conv, b))
tf.summary.histogram('weights', w)
tf.summary.histogram('biases', b)
tf.summary.histogram('activations', act)
return act
错误信息:
ValueError: input channels does not match filter's input channels
At conv = tf.nn.conv2d_transpose(...)
我不确定我tf.nn.conv2d_transpose
是否正确使用。我尝试基于卷积层创建它。