1

我已经下载了邮政编码级别的人口普查 shapefile,cb_2017_us_zcta510_500k.shphttps://www.census.gov/geo/maps-data/data/cbf/cbf_zcta.html

我还下载了允许我添加相应STATE变量的映射文件(https://www.census.gov/geo/maps-data/data/zcta_rel_download.html

我将两者合并,我得到:

library(sf)
library(dplyr)

big_df 

Simple feature collection with 44434 features and 2 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: -176.6847 ymin: -14.37374 xmax: 145.8304 ymax: 71.34122
epsg (SRID):    4269
proj4string:    +proj=longlat +datum=NAD83 +no_defs
First 10 features:
   ZCTA5CE10 STATE                       geometry
1      35442     1 MULTIPOLYGON (((-88.25262 3...
2      35442     1 MULTIPOLYGON (((-88.25262 3...
3      35442     1 MULTIPOLYGON (((-88.25262 3...

现在,我尝试过滤所有小岛和阿拉斯加:

remove_list <-  c("02", "15", "72", "66", "78", "60", "69",
"64", "68", "70", "74", "81", "84", "86", "87", "89", "71", "76",
"95", "79")



big_df %>% filter(!STATE %in% map(remove_list, as.integer)) %>% 
  tm_shape(.) + tm_polygons('pt_count',palette = "Reds", 
                            style = "quantile", n = 10, 
                            title = "counts") 

但我仍然有一些小岛。

在此处输入图像描述

我在这里想念什么?谢谢!

4

1 回答 1

4

这是获取美国大陆几何(国家轮廓)的一种方法:

library(raster)
library(sf)
library(dplyr)

us = getData('GADM', country='USA', level=0) %>%
  st_as_sf() %>%
  st_cast("POLYGON") %>%
  mutate(area = st_area(.)) %>%
  arrange(desc(area)) %>%
  slice(1) # mainland US should be the largest

然后,您可以使用它来运行以仅提取 inside的st_intersection(big_df, us)部分。请注意,首先创建一个或周围可能会有所回报,以确保您的边界不会被剪裁。big_dfusst_bufferst_convex_hullusbig_df

于 2018-05-18T10:11:57.637 回答