我想创建一个可以保存图层不同设置的列表,以便以后可以合并,这里是原始代码
_conv = Conv2D(64, kernel_size=[32,1])(_input)
_norm = BatchNormalization()(_conv)
_activ = Activation("relu")(_norm)
_maxpool_1 = MaxPooling2D()(_activ)
_conv = Conv2D(64, kernel_size=[32,2])(_input)
_norm = BatchNormalization()(_conv)
_activ = Activation("relu")(_norm)
_maxpool_2 = MaxPooling2D()(_activ)
_conv = Conv2D(64, kernel_size=[32,3])(_input)
_norm = BatchNormalization()(_conv)
_activ = Activation("relu")(_norm)
_maxpool_3 = MaxPooling2D()(_activ)
_conv = Conv2D(64, kernel_size=[32,4])(_input)
_norm = BatchNormalization()(_conv)
_activ = Activation("relu")(_norm)
_maxpool_4 = MaxPooling2D()(_activ)
merged_tensor = concatenate([_maxpool_1, _maxpool_2, _maxpool_3, _maxpool_4])
正如您所看到的,除了内核大小之外它们都是相同的,所以为了简化代码,我可以创建这样的东西吗?(基本上是一个循环和一个列表)
_maxpool_list=[]
for i in range(1,5):
_conv = Conv2D(64, kernel_size=[32,i])(_input)
_norm = BatchNormalization()(_conv)
_activ = Activation("relu")(_norm)
_maxpool_list.append((MaxPooling2D()(_activ))
merged_tensor = concatenate(_maxpool_list)
或者,我的问题可能是,创建 keras 图层列表的最佳方法是什么,以便我以后可以加载所有图层