我正在构建一个克林顿和特朗普推文的文本分类器(数据可以在Kaggle上找到)。
我正在使用quanteda
包进行 EDA 和建模:
library(dplyr)
library(stringr)
library(quanteda)
library(lime)
#data prep
tweet_csv <- read_csv("tweets.csv")
tweet_data <- tweet_csv %>%
select(author = handle,
text,
retweet_count,
favorite_count,
source_url,
timestamp = time) %>%
mutate(date = as_date(str_sub(timestamp, 1, 10)),
hour = hour(hms(str_sub(timestamp, 12, 19))),
tweet_num = row_number()) %>%
select(-timestamp)
# creating corpus and dfm
tweet_corpus <- corpus(tweet_data)
edited_dfm <- dfm(tweet_corpus, remove_url = TRUE, remove_punct = TRUE, remove = stopwords("english"))
set.seed(32984)
trainIndex <- sample.int(n = nrow(tweet_csv), size = floor(.8*nrow(tweet_csv)), replace = F)
train_dfm <- edited_dfm[as.vector(trainIndex), ]
train_raw <- tweet_data[as.vector(trainIndex), ]
train_label <- train_raw$author == "realDonaldTrump"
test_dfm <- edited_dfm[-as.vector(trainIndex), ]
test_raw <- tweet_data[-as.vector(trainIndex), ]
test_label <- test_raw$author == "realDonaldTrump"
# making sure train and test sets have the same features
test_dfm <- dfm_select(test_dfm, train_dfm)
# using quanteda's NB model
nb_model <- quanteda::textmodel_nb(train_dfm, train_labels)
nb_preds <- predict(nb_model, test_dfm)
# defining textmodel_nb as classification model
class(nb_model)
model_type.textmodel_nb_fitted <- function(x, ...) {
return("classification")
}
# a wrapper-up function for data preprocessing
get_matrix <- function(df){
corpus <- corpus(df)
dfm <- dfm(corpus, remove_url = TRUE, remove_punct = TRUE, remove = stopwords("english"))
}
然后我定义解释器 - 这里没有问题:
explainer <- lime(train_raw[1:5],
model = nb_model,
preprocess = get_matrix)
但是,当我运行解释器时,即使在与 in 完全相同的数据集上,也会explainer
出现错误:
explanation <- lime::explain(train_raw[1:5],
explainer,
n_labels = 1,
n_features = 6,
cols = 2,
verbose = 0)
predict.textmodel_nb_fitted(x, newdata = newdata, type = type, 中的错误:newdata 中的特征集与训练集中的特征集不同
quanteda
和dfms有关系吗?老实说,我不明白为什么会发生这种情况。任何帮助都会很棒,谢谢!