I would like to train two different Conv models in Keras with different input dimensions.
I have:
input_size=4
input_sizeB=6
model=Sequential()
model.add(Conv2D(filters=10,input_shape=
(1,time_steps,input_size),kernel_size(24,3),activation='relu',data_format='channels_first',kernel_regularizer=regularizers.l2(0.001)))
model.add(Flatten())
A= model.add(Dense(25,
activation='tanh',kernel_regularizer=regularizers.l2(0.003)))
model2=Sequential()
model2.add(Conv2D(filters=10,input_shape=
(1,time_steps,input_sizeB),kernel_size(24,3),activation='relu',data_format='channels_first',kernel_regularizer=regularizers.l2(0.001)))
model2.add(Flatten())
B= model2.add(Dense(25,
activation='tanh',kernel_regularizer=regularizers.l2(0.003)))
Now I would merge the two dense layers at the end of both Conv net.
How I should do?