3

我正在尝试Winsorize()使用包中lapply的功能library(DescTools)。我目前拥有的是;

data$col1 <- Winsorize(data$col1)

它本质上用基于分位数的值替换了极值,替换以下数据如下;

> data$col1
 [1]   -0.06775798   **-0.55213508**   -0.12338265
 [4]    0.04928349    **0.47524313**    0.04782829
 [7]   -0.05070639 **-112.67126382**    0.12657896
[10]   -0.12886632

> Winsorize(data$col1)
 [1] -0.06775798 **-0.37884540** -0.12338265  0.04928349
 [5]  **0.26038103**  0.04782829 -0.05070639 **-0.37884540**
 [9]  0.12657896 -0.12886632

我有一个可以在 data.frame 、、、for loop的所有列中执行此操作的方法,但是,我知道这是一个更好的选择,因此我尝试将其合并到一个函数中,但似乎无法使其正常工作。如果有人能指出我正确的方向,那将不胜感激。col1col2col3col4lapplylapply

数据;

data <- structure(list(EQ.TA = c(-0.0677579847115102, -0.552135083517749, 
-0.123382654164705, 0.0492834931482554, 0.475243125304193, 0.0478282913638668, 
-0.050706389027946, -112.671263815473, 0.126578956975704, -0.128866322940619
), NI.EQ = c(3.64670235329765, 1.66115713369585, 0.209424623633739, 
0.340430636358184, -0.248411254566261, -12.1709277350516, 1.06888235737433, 
0.0515582237132515, 0.177323118521857, 0.419879195374698), NI.TA = c(-0.24709320230217, 
-0.917183132749265, -0.0258393659113752, 0.0167776109344148, 
-0.118055740980805, -0.582114677880617, -0.0541991646381309, 
-5.80913022585296, 0.0224453753901758, -0.0541082879872031), 
    TL.TA = c(1.06775798471151, 1.55213508351775, 1.12338265416471, 
    0.950716506851745, 0.524756874695807, 0.952171708636133, 
    1.05070638902795, 113.671263815473, 0.873421043024296, 1.12886632294062
    )), .Names = c("EQ.TA", "NI.EQ", "NI.TA", "TL.TA"), row.names = c(NA, 
10L), class = "data.frame")
4

2 回答 2

6

您可以lapply对整个data.frame进行重新分配,如下所示:

library(DescTools)
data[]<-lapply(data, Winsorize)

data
#          EQ.TA       NI.EQ       NI.TA      TL.TA
#1   -0.06775798  2.75320700 -0.24709320  1.0677580
#2   -0.55213508  1.66115713 -0.91718313  1.5521351
#3   -0.12338265  0.20942462 -0.02583937  1.1233827
#4    0.04928349  0.34043064  0.01677761  0.9507165
#5    0.31834425 -0.24841125 -0.11805574  0.6816558
#6    0.04782829 -6.80579532 -0.58211468  0.9521717
#7   -0.05070639  1.06888236 -0.05419916  1.0507064
#8  -62.21765589  0.05155822 -3.60775403 63.2176559
#9    0.12657896  0.17732312  0.01989488  0.8734210
#10  -0.12886632  0.41987920 -0.05410829  1.1288663
于 2018-05-02T20:15:42.577 回答
2

我喜欢上面的答案。但是对于最近的一个研究项目,我有一个包含不同类型变量的数据框。我只想使用 lapply 保持 NA 值在 1% 级别对数字变量进行 Winsorize。扩展上面的答案我认为以下可能是一个合适的扩展:

library(DescTools)

wins_vars <- function(x, pct_level = 0.01){
    if(is.numeric(x)){
      Winsorize(x, probs = c(pct_level, 1-pct_level), na.rm = T)
      } else {x}
    }

df <- bind_cols(
  lapply(df, wins_vars))

于 2020-08-26T13:38:49.077 回答