我正在使用 dirlichet 分布在 JAGS 中拟合多元模型。我有一个y
包含 3 个物种比例丰度的矩阵。
#generate 3 columns of species proprotional abundance data
y <- matrix(ncol = 3, nrow = 100)
y[,] <- abs(rnorm(length(y)))
for(i in 1:nrow(y)){
y[i,] <- y[i,] / sum(y[i,])
}
我有一个x
预测值矩阵,其中第一个是截距。
#generate 2 columns of predictors and an intercept
x <- matrix(ncol = 2, nrow = 100)
x[,] <- rnorm(length(x), mean = 20, sd = 4)
x <- cbind(rep(1,nrow(x)),x)
我指定了一个多元锯齿模型jags.model
:
jags.model = "
model {
#setup parameter priors for each species * predictor combination.
for(j in 1:N.spp){
for(k in 1:N.preds){
m[k,j] ~ dgamma(1.0E-3, 1.0E-3)
}
}
#go ahead and fit means of species abundances as a linear combination of predictor and parameters.
for(i in 1:N){
for(j in 1:N.spp){
log(a0[i,j]) <- m[,j] * x[i,]
}
y[i,1:N.spp] ~ ddirch(a0[i,1:N.spp])
}
} #close model loop.
"
我设置了 JAGS 数据对象jags.data
:
jags.data <- list(y = as.matrix(y), x = as.matrix(x),
N.spp = ncol(y), N.preds = ncol(x), N = nrow(y))
我使用 R 中的 runjags 包拟合 JAGS 模型。
jags.out <- runjags::run.jags(jags.model,
data=jags.data,
adapt = 100,
burnin = 200,
sample = 400,
n.chains=3,
monitor=c('m'))
我收到以下错误:
Error: The following error occured when compiling and adapting the model using rjags:
Error in rjags::jags.model(model, data = dataenv, n.chains = length(runjags.object$end.state), :
RUNTIME ERROR:
Invalid vector argument to exp
我在这里做错了什么?作为参考,通过预测组合拼出每个参数仍然很合适:
jags.model = "
model {
#setup parameter priors for each species * predictor combination.
for(j in 1:N.spp){
for(k in 1:N.preds){
m[k,j] ~ dgamma(1.0E-3, 1.0E-3)
}
}
#go ahead and fit means of species abundances as a linear combination of predictor and parameters.
for(i in 1:N){
for(j in 1:N.spp){
log(a0[i,j]) <- m[1,j] * x[i,1] + m[2,j] * x[i,2] + m[3,j] * x[i,3]
}
y[i,1:N.spp] ~ ddirch(a0[i,1:N.spp])
}
} #close model loop.
"