0

我正在研究具有以下架构的迁移学习模型(基于 Vgg19)。

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 224, 224, 3)       0
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080
_________________________________________________________________
block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808
_________________________________________________________________
block4_conv4 (Conv2D)        (None, 28, 28, 512)       2359808
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0
_________________________________________________________________
flatten_1 (Flatten)          (None, 25088)             0
_________________________________________________________________
dense_1 (Dense)              (None, 4096)              102764544
_________________________________________________________________
dropout_1 (Dropout)          (None, 4096)              0
_________________________________________________________________
dense_2 (Dense)              (None, 1024)              4195328
_________________________________________________________________
dropout_2 (Dropout)          (None, 1024)              0
_________________________________________________________________
dense_3 (Dense)              (None, 512)               524800
_________________________________________________________________
dense_4 (Dense)              (None, 2)                 1026
=================================================================

问题:训练错误结果(如下所示)反映了第一个时期的有意义的值。一旦模型达到第二个纪元,精度就达到 1.0 - 这是不可能的。当我将 VGG 切换到 Inception、添加正则化、在不同优化器(sgd、addagrad、rmsprop)之间切换或在损失(categorical_crossentropy、mean_squared_error)之间切换时,此行为不会改变。

此外,所有测试/验证图像的分类结果为 [[1. 0. 0. 0. 0.]] 表示分类器总是倾向于支持 class0。

Epoch 1/2
10/10 [==============================] - 109s 11s/step - loss: 1.7893 - acc: 0.9000

Epoch 00001: val_acc improved from -inf to 0.60000, saving model to vgg19_12.h5
Epoch 2/2
10/10 [==============================] - 122s 12s/step - loss: 0.9368 - acc: 1.0000

问:有什么想法可能是这个问题的根本原因吗?

4

0 回答 0