编码:
import tensorflow as tf
A = tf.constant([[0.1,0.2,0.3,0.4],[0.2,0.1,0.4,0.3],[0.4,0.3,0.2,0.1],[0.3,0.2,0.1,0.4],[0.1,0.4,0.3,0.2]], dtype=tf.float32)
B = tf.constant([1, 2, 1, 3, 3], dtype=tf.int32)
w_1 = tf.constant(value=[1,1,1,1,1], dtype=tf.float32)
w_2 = tf.constant(value=[1,2,3,4,5], dtype=tf.float32)
D = tf.contrib.legacy_seq2seq.sequence_loss_by_example([A], [B], [w_1])
D_1 = tf.contrib.legacy_seq2seq.sequence_loss_by_example([A], [B], [w_1], average_across_timesteps=False)
D_2 = tf.contrib.legacy_seq2seq.sequence_loss_by_example([A], [B], [w_2])
D_3 = tf.contrib.legacy_seq2seq.sequence_loss_by_example([A], [B], [w_2], average_across_timesteps=False)
with tf.Session() as sess:
print(sess.run(D))
print(sess.run(D_1))
print(sess.run(D_2))
print(sess.run(D_3))
结果是:
[1.4425355 1.2425355 1.3425356 1.2425356 1.4425356]
[1.4425355 1.2425355 1.3425356 1.2425356 1.4425356]
[1.4425355 1.2425355 1.3425356 1.2425356 1.4425356]
[1.4425355 2.485071 4.027607 4.9701424 7.212678 ]
我不明白为什么无论参数average_across_timesteps
设置为“真”还是“假”,结果都是一样的。