我的目标是将顶层附加到 VGG19 等预训练模型,并使用合并模型进行一些预测。合并后的模型精度为 0。需要一点帮助。
我自己的顶层
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D
from keras.layers import Dropout, Flatten, Dense
from keras.models import Sequential
vgg19top_model = Sequential()
vgg19top_model.add(GlobalAveragePooling2D(input_shape=train_vgg19.shape[1:])) # shape=(7, 7, 512)
vgg19top_model.add(Dense(255, activation='relu'))
vgg19top_model.add(Dropout(0.35))
vgg19top_model.add(Dense(133, activation='softmax'))
vgg19top_model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
global_average_pooling2d_1 ( (None, 512) 0
_________________________________________________________________
dense_1 (Dense) (None, 255) 130815
_________________________________________________________________
dropout_1 (Dropout) (None, 255) 0
_________________________________________________________________
dense_2 (Dense) (None, 133) 34048
=================================================================
Total params: 164,863
Trainable params: 164,863
Non-trainable params: 0
在瓶颈特征上训练我的顶级模型并获得 72% 的准确率
在此处重新加载这些权重
代码未显示
加载 VGG19 底层以与我的顶层合并
from keras import applications
vgg19=applications.vgg19.VGG19(include_top=False, weights='imagenet',input_shape=(224, 224, 3))
vgg19.summary()
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
...
...
_________________________________________________________________
block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
=================================================================
Total params: 20,024,384
Trainable params: 20,024,384
Non-trainable params: 0
合并 2 个模型
from keras.layers import Input, Dense
from keras.models import Model
global_average_pooling2d_7 = vgg19.get_layer('block5_pool') # shape=(?, 7, 7, 512)
bn_conv1_model = Model(inputs=vgg19.input, outputs=global_average_pooling2d_7.output)
new_model = Sequential()
new_model.add(bn_conv1_model)
new_model.add(vgg19top_model)
new_model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_12 (Model) <-VGG19 (None, 7, 7, 512) 20024384
_________________________________________________________________
sequential_6 (Sequential) (None, 133) 164863
=================================================================
Total params: 20,189,247
Trainable params: 164,863
Non-trainable params: 20,024,384
现在让我们在一些预测上端到端地测试合并模型
它完全失败,准确率为 0%
我怎样才能端到端地测试这个新模型——或者更确切地说,为什么它的预测如此糟糕?