4

Tensorflow 对象检测模块的 sess.run() 函数需要大约 2.5 秒来检测 600x600 图像中的边界边界。如何加快此代码的速度?

def run(image, detection_graph):

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        # Definite input and output Tensors for detection_graph
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        image_np = image
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        # Actual detection.
        print("2")
        start_time = datetime.datetime.now()
        (boxes, scores, classes, num) = sess.run(
          [detection_boxes, detection_scores, detection_classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
        end_time = datetime.datetime.now()
        diff = (end_time - start_time).total_seconds()*1000
        print (diff)
        print("3")

        return boxes[0], scores[0]
        #print scores
        #print classes
4

1 回答 1

2

第一次运行的sess.run执行时间是正常的,之后它可能会快 100 倍(不是开玩笑)。

关键是重新使用会话,在您的示例中,我将添加另一个图像评估并测量该时间并检查性能是否有所提高,例如:

# all your prev code here
print (diff)
print("3")

image_np = image2 # get another image from somewhere
image_np_expanded = np.expand_dims(image_np, axis=0)
start_time = datetime.datetime.now()

(boxes, scores, classes, num) = sess.run(
          [detection_boxes, detection_scores, detection_classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
end_time = datetime.datetime.now()

diff = (end_time - start_time).total_seconds()*1000
print("Detection #2")
print(diff)

因此,您不需要 GPU 或更小的图像(还),只需“热身”会话并将其用于所有预测。

我目前在测试环境中进行了一个非常适度的设置,最后一个版本的 Ubuntu 在 VirtualBox 上运行,单核且没有 GPU(MobileNet2 + COCO 数据集),一旦会话“温暖”,我得到的时间相当不错。

--- 3.7862255573272705 seconds ---
--- 0.21631121635437012 seconds ---
--- 0.1784508228302002 seconds ---

注意第一个缓慢的执行时间,最后一个是大小为 1050*600 的图像

于 2018-09-11T21:46:21.833 回答