对于大量 Flink SQL 查询(以下 100 条),Flink 命令行客户端在 Yarn 集群上失败并显示“JobManager 在 600000 毫秒内没有响应”,即集群上永远不会启动作业。
- 在最后一个 TaskManager 启动后,JobManager 日志除了“在 JobManager 中找不到 ID 为 5cd95f89ed7a66ec44f2d19eca0592f7 的作业”的 DEBUG 日志之外什么都没有,表明它可能卡住了(创建 ExecutionGraph?)。
- 与本地的独立 java 程序相同(最初是高 CPU)
- 注意: structStream 中的每一行包含 515 列(许多最终为空),其中包括一个包含原始消息的列。
- 在 YARN 集群中,我们为 TaskManager 指定 18GB,为 JobManager 指定 18GB,每个插槽 5 个,并行度为 725(我们的 Kafka 源中的分区)。
Flink SQL 查询:
select count (*), 'idnumber' as criteria, Environment, CollectedTimestamp,
EventTimestamp, RawMsg, Source
from structStream
where Environment='MyEnvironment' and Rule='MyRule' and LogType='MyLogType'
and Outcome='Success'
group by tumble(proctime, INTERVAL '1' SECOND), Environment,
CollectedTimestamp, EventTimestamp, RawMsg, Source
代码
public static void main(String[] args) throws Exception {
FileSystems.newFileSystem(KafkaReadingStreamingJob.class
.getResource(WHITELIST_CSV).toURI(), new HashMap<>());
final StreamExecutionEnvironment streamingEnvironment = getStreamExecutionEnvironment();
final StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(streamingEnvironment);
final DataStream<Row> structStream = getKafkaStreamOfRows(streamingEnvironment);
tableEnv.registerDataStream("structStream", structStream);
tableEnv.scan("structStream").printSchema();
for (int i = 0; i < 100; i++) {
for (String query : Queries.sample) {
// Queries.sample has one query that is above.
Table selectQuery = tableEnv.sqlQuery(query);
DataStream<Row> selectQueryStream =
tableEnv.toAppendStream(selectQuery, Row.class);
selectQueryStream.print();
}
}
// execute program
streamingEnvironment.execute("Kafka Streaming SQL");
}
private static DataStream<Row> getKafkaStreamOfRows(StreamExecutionEnvironment environment) throws Exception {
Properties properties = getKafkaProperties();
// TestDeserializer deserializes the JSON to a ROW of string columns (515)
// and also adds a column for the raw message.
FlinkKafkaConsumer011 consumer = new
FlinkKafkaConsumer011(KAFKA_TOPIC_TO_CONSUME, new TestDeserializer(getRowTypeInfo()), properties);
DataStream<Row> stream = environment.addSource(consumer);
return stream;
}
private static RowTypeInfo getRowTypeInfo() throws Exception {
// This has 515 fields.
List<String> fieldNames = DDIManager.getDDIFieldNames();
fieldNames.add("rawkafka"); // rawMessage added by TestDeserializer
fieldNames.add("proctime");
// Fill typeInformationArray with StringType to all but the last field which is of type Time
.....
return new RowTypeInfo(typeInformationArray, fieldNamesArray);
}
private static StreamExecutionEnvironment getStreamExecutionEnvironment() throws IOException {
final StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.enableCheckpointing(60000);
env.setStateBackend(new FsStateBackend(CHECKPOINT_DIR));
env.setParallelism(725);
return env;
}
private static DataStream<Row> getKafkaStreamOfRows(StreamExecutionEnvironment environment) throws Exception {
Properties properties = getKafkaProperties();
// TestDeserializer deserializes the JSON to a ROW of string columns (515)
// and also adds a column for the raw message.
FlinkKafkaConsumer011 consumer = new FlinkKafkaConsumer011(KAFKA_TOPIC_TO_CONSUME, new TestDeserializer(getRowTypeInfo()), properties);
DataStream<Row> stream = environment.addSource(consumer);
return stream;
}
private static RowTypeInfo getRowTypeInfo() throws Exception {
// This has 515 fields.
List<String> fieldNames = DDIManager.getDDIFieldNames();
fieldNames.add("rawkafka"); // rawMessage added by TestDeserializer
fieldNames.add("proctime");
// Fill typeInformationArray with StringType to all but the last field which is of type Time
.....
return new RowTypeInfo(typeInformationArray, fieldNamesArray);
}
private static StreamExecutionEnvironment getStreamExecutionEnvironment() throws IOException {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.enableCheckpointing(60000);
env.setStateBackend(new FsStateBackend(CHECKPOINT_DIR));
env.setParallelism(725);
return env;
}