我正在尝试通过 GridSearchCV 找到最佳 xgboost 模型,并且作为 cross_validation,我想使用 4 月的目标数据。这是代码:
x_train.head()
y_train.head()
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import make_scorer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import TimeSeriesSplit
import xgboost as xg
xgb_parameters={'max_depth':[3,5,7,9],'min_child_weight':[1,3,5]}
xgb=xg.XGBRegressor(learning_rate=0.1, n_estimators=100,max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8)
model=GridSearchCV(n_jobs=2,estimator=xgb,param_grid=xgb_parameters,cv=train_test_split(x_train,y_train,test_size=len(y_train['2016-04':'2016-04']), random_state=42, shuffle=False),scoring=my_func)
model.fit(x_train,y_train)
model.grid_scores_
model.best_params_
但是我在训练我的模型时遇到了这个错误。
有人可以帮我吗?或者有人可以建议我如何在上个月拆分未洗牌的数据来训练/测试以验证模型?
感谢您的帮助