2

目前我有resnet_v2_50.ckpt来自 tensorflow 的开源预训练模型。我正在尝试在 Go 中提供此模型,因为我的 Web 应用程序的后端将在 Go 中。如果我要创建自己的模型并训练它,然后保存它。我在 Go 中提供它没有任何问题,但我正在尝试使用预训练模型来节省时间。

这是我如何保存模型的简单示例

mnist = input_data.read_data_sets(DATA_DIR, one_hot=True)

# Recall that each image is 28x28
x = tf.placeholder(tf.float32, [None, 784], name='imageinput')
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.add(tf.matmul(x, W), b)
labels = tf.placeholder(tf.float32, [None, 10])
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy_loss)

with tf.Session() as sess:
    with tf.device("/cpu:0"):
        sess.run(tf.global_variables_initializer())
        for i in range(1000):
            batch_x, batch_label = mnist.train.next_batch(100)
            loss, _ = sess.run([cross_entropy_loss, train_step], feed_dict={x: batch_x, labels: batch_label})
            print '%d: %f' % (i + 1, loss)

        infer = tf.argmax(y, axis=1, name='infer')
        truth = tf.argmax(labels, axis=1)
        correct_prediction = tf.equal(infer, truth)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print sess.run(accuracy, feed_dict={x: mnist.test.images, labels: mnist.test.labels})

        print 'Time to save the graph!'
        builder = tf.saved_model.builder.SavedModelBuilder('mnist_model')
        builder.add_meta_graph_and_variables(sess, ['serve'])
        builder.save()

我可以在 Go 中使用 tensorflow 加载它

model, err := tf.LoadSavedModel("./tf_mnist_py/mnist_model", []string{"serve"}, nil)
if err != nil {
    fmt.Printf("Error loading saved model: %s\n", err.Error())
    return
}

defer model.Session.Close()

但是现在谈到预训练模型,我正在处理ckpt文件。我拥有的一种解决方案是在 Python 中加载它,然后将其保存为 protobuf。

from tensorflow.python.tools import inspect_checkpoint as ckpt
ckpt.print_tensors_in_checkpoint_file('./resnet50/resnet_v2_50.ckpt',
                                      tensor_name='',
                                      all_tensors=False,
                                      all_tensor_names=False)

tf.reset_default_graph()
saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess, './resnet50/resnet_v2_50.ckpt')
    print 'Model is restored'

    print 'Time to save the graph!'
    builder = tf.saved_model.builder.SavedModelBuilder('resnet_50_model')
    builder.add_meta_graph_and_variables(sess, ['serve'])
    builder.save()

但是,这给了我一个错误,说ValueError: No variables to save. 我可以通过声明一个变量来修复它

v1 = tf.get_variable('total_loss/ExponentialMovingAverage', shape=[])

但是我的问题来了,这是否意味着我必须在 ResNet50 中声明每个变量并让 tensorflow 将 ckpt 文件中的值加载到这些变量中,然后执行保存?有没有捷径可以做到这一点?

4

1 回答 1

5

.meta如果您可以使用预训练模型,您也应该从文件中导入变量,例如

saver = tf.train.import_meta_graph('./resnet50/resnet_v2_50.meta')

详细教程在这里

如果您没有.meta可用的,但您确实有网络生成代码,例如resnet_v2_50tensorflow/models/blob/master/research/slim/nets/resnet_v2.py 中,那么您应该导入该文件并运行该resnet_v2_50函数,将为您定义所有变量。然后恢复检查点。

于 2018-03-31T22:05:48.833 回答