我正在使用 java Sagemaker SDK 调用 Sagemaker 端点。我发送的数据几乎不需要清理,模型就可以将其用于预测。我怎样才能在 Sagemaker 中做到这一点。
我在 Jupyter 笔记本实例中有一个预处理功能,它在传递该数据以训练模型之前清理训练数据。现在我想知道我是否可以在调用端点时使用该函数,或者该函数是否已被使用?如果有人愿意,我可以显示我的代码吗?
编辑 1 基本上,在预处理中,我正在做标签编码。这是我的预处理功能
def preprocess_data(data):
print("entering preprocess fn")
# convert document id & type to labels
le1 = preprocessing.LabelEncoder()
le1.fit(data["documentId"])
data["documentId"]=le1.transform(data["documentId"])
le2 = preprocessing.LabelEncoder()
le2.fit(data["documentType"])
data["documentType"]=le2.transform(data["documentType"])
print("exiting preprocess fn")
return data,le1,le2
这里的“数据”是一个熊猫数据框。
现在我想在调用端点时使用这些 le1,le2。我想在 sagemaker 本身而不是在我的 java 代码中进行此预处理。