0

(12000, 3)使用 sklearn 高斯混合模型算法 (GMM) 对我的数据进行了聚类。我有 3 个集群。我的数据的每个点都代表一个分子结构。我想知道如何对每个集群进行采样。我试过这个功能:

gmm = GMM(n_components=3).fit(Data)
gmm.sample(n_samples=20)

但它确实对整个分布进行了抽样,但我需要每个组件的样本。

4

1 回答 1

1

好吧,这并不容易,因为您需要计算所有协方差矩阵的特征向量。这是我研究的一个问题的一些示例代码

import numpy as np
from scipy.stats import multivariate_normal
import random
from operator import truediv
import itertools
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import mixture

#import some data which can be used for gmm
mix = np.loadtxt("mixture.txt", usecols=(0,1), unpack=True)
#print(mix.shape)
color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
                              'darkorange'])

def plot_results(X, Y_, means, covariances, index, title):
#function for plotting the gaussians
    splot = plt.subplot(2, 1, 1 + index)
    for i, (mean, covar, color) in enumerate(zip(
            means, covariances, color_iter)):
        v, w = linalg.eigh(covar)
        v = 2. * np.sqrt(2.) * np.sqrt(v)
        u = w[0] / linalg.norm(w[0])
        # as the DP will not use every component it has access to
        # unless it needs it, we shouldn't plot the redundant
        # components.
        if not np.any(Y_ == i):
            continue
        plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

        # Plot an ellipse to show the Gaussian component
        angle = np.arctan(u[1] / u[0])
        angle = 180. * angle / np.pi  # convert to degrees
        ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
        ell.set_clip_box(splot.bbox)
        ell.set_alpha(0.5)
        splot.add_artist(ell)

    plt.xlim(-4., 3.)
    plt.ylim(-4., 2.)

gmm = mixture.GaussianMixture(n_components=3, covariance_type='full').fit(mix.T)
print(gmm.predict(mix.T))
plot_results(mix.T, gmm.predict(mix.T), gmm.means_, gmm.covariances_, 0,
             'Gaussian Mixture')   

所以对于我的问题,结果图如下所示:在此处输入图像描述

编辑:这里是您评论的答案。我会使用熊猫来做到这一点。假设X是你的特征矩阵并且y是你的标签,那么

import pandas as pd
y_pred = gmm.predict(X)
df_all_info = pd.concat([X,y,y_pred], axis=1)

在生成的数据框中,您可以检查所需的所有信息,甚至可以排除算法错误分类的样本:

df_wrong = df_all_info[df_all_info['name of y-column'] != df_all_info['name of y_pred column']]
于 2018-03-28T20:06:41.257 回答