假设您有一个 3 维点的数据集。每个点都有坐标(x, y, z)
。这些(x, y, z)
是维度。由三个值表示的点,例如(8, 7, 4)
。它称为输入向量。
当您应用 PCA 算法时,您基本上将输入向量转换为新向量。它可以表示为转动的函数(x, y, z) => (v, w).
例子:(8, 7, 4) => (-4, 13)
现在您收到了一个更短的向量(您减少了一个维度),但您的点仍然有坐标,即(v, w)
. 这意味着您可以使用马氏测量来计算两点之间的距离。距离平均坐标很远的点实际上是异常点。
示例解决方案:
import breeze.linalg.{DenseVector, inv}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{PCA, StandardScaler, VectorAssembler}
import org.apache.spark.ml.linalg.{Matrix, Vector}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.functions._
object SparkApp extends App {
val session = SparkSession.builder()
.appName("spark-app").master("local[*]").getOrCreate()
session.sparkContext.setLogLevel("ERROR")
import session.implicits._
val df = Seq(
(1, 4, 0),
(3, 4, 0),
(1, 3, 0),
(3, 3, 0),
(67, 37, 0) //outlier
).toDF("x", "y", "z")
val vectorAssembler = new VectorAssembler().setInputCols(Array("x", "y", "z")).setOutputCol("vector")
val standardScalar = new StandardScaler().setInputCol("vector").setOutputCol("normalized-vector").setWithMean(true)
.setWithStd(true)
val pca = new PCA().setInputCol("normalized-vector").setOutputCol("pca-features").setK(2)
val pipeline = new Pipeline().setStages(
Array(vectorAssembler, standardScalar, pca)
)
val pcaDF = pipeline.fit(df).transform(df)
def withMahalanobois(df: DataFrame, inputCol: String): DataFrame = {
val Row(coeff1: Matrix) = Correlation.corr(df, inputCol).head
val invCovariance = inv(new breeze.linalg.DenseMatrix(2, 2, coeff1.toArray))
val mahalanobois = udf[Double, Vector] { v =>
val vB = DenseVector(v.toArray)
vB.t * invCovariance * vB
}
df.withColumn("mahalanobois", mahalanobois(df(inputCol)))
}
val withMahalanobois: DataFrame = withMahalanobois(pcaDF, "pca-features")
session.close()
}