0

我在pykalman 文档上看到的所有示例都适用于给定的数据集,我正在徘徊如何通过在考虑时间增量的同时提供单个观察结果来使用它。

从文档中:

from pykalman import KalmanFilter
import numpy as np
kf = KalmanFilter(transition_matrices = [[1, 1], [0, 1]], observation_matrices = [[0.1, 0.5], [-0.3, 0.0]])
measurements = np.asarray([[1,0], [0,0], [0,1]])  # 3 observations
kf = kf.em(measurements, n_iter=5)
(filtered_state_means, filtered_state_covariances) = kf.filter(measurements)
(smoothed_state_means, smoothed_state_covariances) = kf.smooth(measurements)
4

0 回答 0