0

我正在尝试将一个点存储到一个数组中。数组的大小必须为 10,点必须是从 0 到 100 的随机数。我将使用这个数组,然后通过快速排序对其进行组织,并找出最接近的点。做了一些研究,我发现 Utility 类有一些我认为会起作用的东西,所以我试图找出如何使数组生成随机点。一件事是我需要数组通过引用传递,或者只是为了确保我可以在 main.js 中拥有这个数组。

#include <iostream>
#include "qsort.h"
#include <stdlib.h>
#include <utility>

using namespace std;

const int ARRAY_SIZE = 10; 

void initializePairs(pair<int,int> array);

int main()
{
    //pair<int, int> shortPointArray[ARRAY_SIZE];
    /*pair<int,int> temp = make_pair(5,6);
    pair<int,int> shortPointArray[1];
    shortPointArray[0] = temp;*/

    pair<int,int> shortPointArray[1];
    //qsort sorting;

    initializePairs(shortPointArray);

    return 1;
}

void initializePairs(pair<int,int> array)
{
    int x;
    int y;
    pair<int,int> temp;

    for(int i = 0; i < ARRAY_SIZE; i++)
    {   
        x = rand() % 100;
        y = rand() % 100;
        temp = make_pair(x,y);
        array[i] = temp;
    }   
}
4

1 回答 1

0

做你正在寻找的东西并不难:

主文件

#include <iostream>
#include <vector>
#include <algorithm>
#include <random>

#include "Point.h"

int main() {
    std::random_device rd; // Random Device: Used To Seed Mersenne Random Generator
    std::mt19937 gen;      // Mersenne Twister
    gen.seed( rd() );      // Seed The Generator
    std::uniform_int_distribution<> dist(0, 100); // Uniform Int Distribution between [a, max]

    // Point<int>
    std::vector<Point<int>> points;
    points.reserve( NUM_POINTS );

    for ( std::size_t i = 0; i < NUM_POINTS; i++ ) {
        // Instead of creating a temporary stack copy each iteration
        // I chose to use the constructor directly and instead of
        // push_back, I'm using emplace_back.
        // Point<int> p( dist( gen ), dist( gen ) );
        // points.push_back( p );

        points.emplace_back( Point<int>( dist( gen ), dist( gen ) ) );
    }

    std::cout << "Showing 10 points of type int with random (x,y):\n";
    for ( auto& p : points ) {
        std::cout << p;
    }
    std::cout << std::endl;

    // Point<float>
    std::vector<Point<float>> points2;
    points.reserve( NUM_POINTS );
    std::uniform_real_distribution<float> dist2( 0, 100.0f );

    for ( std::size_t i = 0; i < NUM_POINTS; i++ ) {
        // Instead of creating a temporary stack copy each iteration
        // I chose to use the constructor directly and instead of
        // push_back, I'm using emplace_back.
        // Point<float> p( dist( gen ), dist( gen ) );
        // points2.push_back( p );

        points2.emplace_back( Point<float>( dist( gen ), dist( gen ) ) );
    }

    std::cout << "Showing 10 points of type float with random (x,y):\n";
    for ( auto& p : points2 ) {
        std::cout << p;
    }
    std::cout << std::endl;

    // Sorting the containers:
    std::sort( points.begin(), points.end() );
    std::sort( points2.begin(), points2.end() );

    std::cout << "Showing the sorted points with type int (x,y):\n";
    for ( auto& p : points ) {
        std::cout << p;
    }
    std::cout << std::endl;

    std::cout << "Showing the sorted points with type float (x,y):\n";
    for ( auto& p : points2 ) {
        std::cout << p;
    }
    std::cout << std::endl;


    std::cout << std::endl;
    system( "PAUSE" );
    return 0;
}

点.h

#ifndef POINT_H
#define POINT_H

#include <iostream>
#include <tuple>     // std::tie

const std::size_t NUM_POINTS { 10 };

// Need class Point prototype for operator<< declaration
template<class> class Point;     

// Need operator<< declaration for class template Point's friend declaration 
template<class T>
std::ostream&  operator<<( std::ostream& out, const Point<T>& );

// Class Declaration & Definition
template<class T>
class Point {
public:
    T _x;
    T _y;
    Point() : _x( 0 ), _( 0 ) {}
    Point( T x, T y ) : _x( x ), _y( y ) {}
    Point( T& x, T& y ) : _x( x ), _y( y ) {}
    Point( T* x, T* y ) : _x( *x ), _y( *y ) {}

    // friend prototype: notice the extra <> in this declaration
    // It tells the compiler that this friend function will be a specialization of this class template
    friend std::ostream& operator<< <>( std::ostream& out, const Point<T>& p );

    // operator< for comparison
    bool operator<( Point<T>& p ) {
        // std::tie makes it real easy to compare a (set) of values.
        return std::tie( _x, _y ) < std::tie( p._x, p._y );
    }

    // operator> for comparison
    bool operator<( Point<T>& p ) {
           return !(*this < p );
    }

    // operator== for comparison
    bool operator==( Point<T>& p ) {
        return (this->_x == p._x && this->y == p._y );
    }                
};

// operator<< definition
template<class T>
std::ostream& operator<<( std::ostream& out, const Point<T>& p ) {
    return out << "(" << p._x << "," << p._y << ")\n";
}

#endif // !POINT_H

至于类的实现template Point<T>可以参考头文件中的注释。


对于主要功能的细节,我将介绍其中的一些细节。

为了生成您的随机值,我强烈建议您远离random()或与其相关的任何已弃用或即将成为功能的功能。我将首先学习和使用可以在标准库中找到的伪随机生成器以及不同类型的分布:这些都可以在<random>头文件中找到。您可以使用std::default_random_engine(),但我更喜欢使用std::random_device我们可以将其用于SEED我们选择的引擎(发电机)。最常用的引擎或生成器之一被称为Mersenne Twisterwhich is std::mt19937,并且它也有 65 位版本。这很简单。

{ 
    std::random_device rd; // create an instance of our device to seed with
    std::mt19937 gen;      // create an instance of our generator (engine)
    gen.seed( rd() ); // This seeds the generator (engine)
    // Now we need a distribution along with its data type
    // there are different versions of these distributions for different types
    // Some are for integral types while others are for floating point types

    // Here we want a uniform distribution for int so we default the template
    std::uniform_int_distribution<> dist(0, 100); //random from [0,100]
    // otherwise we could of done
    std::uniform_int_distribution<unsigned int> dist2( 0, 50 ); // random from [0, 50]

    // There are other types of distributions
    std::normal_distribution<> a;
    std::poisson_distribution<> b;
    // etc.

    // If the distributions say "real" they are floating point types
    std::uniform_real_distribution<float> f;
    std::uniform_real_distribution<double> d;

    // Just as there are different distributions there also other
    // generators or engines beside the mersenne twister.

    // There is another way besides using `random_device` to seed the generator
    // you can use <chrono> header to use `std::chrono::high_resolution_clock
    // to seed the generator
    // You can also seed by const value 
    // and you can use std::seed_seq;
}

您可以从此网页找到执行 Pseudo Random Generators & Distributions 所需的所有信息


所以现在我们已经启动了随机生成器并开始工作,下一步是我们声明 astd::vector<Point<int>>然后我们使用它的reserve函数并用我们的 const 设置它NUM_POINTS。然后我们通过一个 for 循环进行迭代,并用一组随机值NUM_POINTS填充我们的容器。(x,y)然后我们使用范围基础 for 循环显示结果。

我重复上述过程以显示它是用浮点数完成的。我这样做是为了展示模板的有用性。

之后,我最终通过std::sort( begin, end )使用向量的迭代器调用来对容器进行排序。然后我返回并使用范围基数 for 循环来显示两个已排序的向量。

使用 std::sort 很容易,因为我们operator<()为我们的类定义了一个重载并且我们使用 std::tie 来轻松地比较它们。通过将一堆零件(例如乐高积木)组合在一起,这向您展示了标准库的力量!

于 2018-03-10T07:17:48.540 回答