这是一种方法:
In [15]: dfrm
Out[15]:
A B C
0 0.948898 0.587032 0.131551
1 0.385582 0.275673 0.107135
2 0.849599 0.696882 0.313717
3 0.993080 0.510060 0.287691
4 0.994823 0.441560 0.632076
5 0.711145 0.760301 0.813272
6 0.932131 0.531901 0.393798
7 0.965915 0.812821 0.287819
8 0.782890 0.478565 0.960353
9 0.908078 0.850664 0.912878
In [16]: windows
Out[16]: [1, 2, 3]
In [17]: pandas.DataFrame(
{c: dfrm[c].rolling(windows[i]).mean() for i, c in enumerate(dfrm.columns)}
)
Out[17]:
A B C
0 0.948898 NaN NaN
1 0.385582 0.431352 NaN
2 0.849599 0.486277 0.184134
3 0.993080 0.603471 0.236181
4 0.994823 0.475810 0.411161
5 0.711145 0.600931 0.577680
6 0.932131 0.646101 0.613049
7 0.965915 0.672361 0.498296
8 0.782890 0.645693 0.547323
9 0.908078 0.664614 0.720350
正如评论中提到的@Manish Saraswat,您也可以表达与dfrm[c].rolling_mean(windows[i])
. 此外,如果需要,您可以使用序列作为项目windows
,它们将表示自定义窗口形状(大小和权重),或具有不同rolling
聚合和关键字的任何其他选项。