在要求维度级别向下钻取之后,我试图在两个指标之间创建散点图。但是,我收到错误消息:KeyError: u'brand'(其中一个列名)。我是 Dash 新手,无法调试错误,因为列名没有任何问题。以下是代码:
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import sqlalchemy as sq
import numpy as np
from datetime import datetime
engine_prd = sq.create_engine(“connection url”)
df=pd.read_sql(“SELECT t1.date,
t1.article_type as article_type,
t1.product_gender as product_gender,
t1.brand as brand,
t1.master_category as master_category,
t1.business_unit as business_unit,
SUM(t1.revenue) as revenue,
SUM(t1.sold_quantity) as units_sold,
SUM(t1.total_discount) / NULLIF( SUM(t1.total_mrp),0) AS discount_perc,
SUM(t1.approved_po_quantity) - SUM(t1.po_inwarded_quantity) AS pending_invard_quantity,
SUM(t1.revenue) / NULLIF(SUM(t1.list_count), 0) AS rpi,
SUM(t1.list_count),
100 *ratio_to_report(SUM(t1.list_count)) OVER (PARTITION BY t1.DATE) AS lc_share
FROM fact_category_over_view_metrics t1
WHERE t1.DATE> 20180101 and is_live_style=1
GROUP BY
t1.DATE,t1.article_type,t1.product_gender,t1.brand,t1.master_category,
t1.business_unit;”,engine_prd)
df[[‘date_format’]] = df[[‘date’]].applymap(str).applymap(lambda s: “{}/{}/{}”.format(s[4:6],s[6:], s[0:4]))
df[[‘year_month’]]=df[[‘date’]].applymap(str).applymap(lambda s: “{}-{}”.format(s[0:4],s[4:6]))
df[‘year_month’]=df[‘year_month’].astype(str)
year_month=df[‘year_month’].unique()
available_indicators = np.array([‘revenue’,‘units_sold’,‘discount_perc’,‘pending_invard_quantity’,‘rpi’,‘lc_share’])
dimension_level=np.array([‘brand’,‘product_gender’,‘article_type’,‘master_category’,‘business_unit’])
#available_indicators=list(df)
app=dash.Dash()
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(
id='dimension-level',
options=[{'label': i, 'value': i} for i in dimension_level],
value='brand'
)]),
html.Div([
dcc.Dropdown(
id='crossfilter-xaxis-column',
options=[{'label': i, 'value': i} for i in available_indicators],
value='revenue'
),
dcc.RadioItems(
id='crossfilter-xaxis-type',
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
value='Linear',
labelStyle={'display': 'inline-block'}
)
],
style={'width': '48%', 'display': 'inline-block'}),
html.Div([
dcc.Dropdown(
id='crossfilter-yaxis-column',
options=[{'label': i, 'value': i} for i in available_indicators],
value='units_sold'
),
dcc.RadioItems(
id='crossfilter-yaxis-type',
options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
value='Linear',
labelStyle={'display': 'inline-block'}
)
], style={'width': '48%', 'float': 'right', 'display': 'inline-block'})
]),
dcc.Graph(
id='crossfilter-indicator-scatter'),
dcc.Slider(
id='crossfilter-year-month--slider',
min=0,
max=len(df['year_month'].unique()),
value=0,
step=None,
marks={i : str(yearm) for i, yearm in enumerate(df['year_month'].unique())} # enumerate the dates
)
])
@app.callback(
dash.dependencies.Output(‘crossfilter-indicator-scatter’, ‘figure’),
[dash.dependencies.Input(‘dimension-level’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-year-month–slider’, ‘value’)],
[dash.dependencies.State(‘crossfilter-year-month–slider’, ‘marks’)])
def update_graph(dimension_level_name,xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type, selected_year_month_key,marks):
selected_year_month=marks[str(selected_year_month_key)]
df_filtered = df[df['year_month'] == selected_year_month]
dff=df_filtered.groupby([dimension_level_name]).sum()
return {
'data': [go.Scatter(
x=dff[xaxis_column_name],
y=dff[yaxis_column_name],
text=dff[dimension_level_name],
#customdata=dff['article_type'],
mode='markers',
marker={
'size': 15,
'opacity': 0.5,
'line': {'width': 0.5, 'color': 'white'}
}
)],
'layout': go.Layout(
xaxis={
'title': xaxis_column_name,
'type': 'linear' if xaxis_type == 'Linear' else 'log'
},
yaxis={
'title': yaxis_column_name,
'type': 'linear' if yaxis_type == 'Linear' else 'log'
},
margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
height=450,
hovermode='closest'
)
}
如果名称 == 'main': app.run_server()
使用下拉列表中的输入值按 df 分组时发生错误。数据框的头部外观已链接到示例数据: