I have a dataset that is dimensioned by time
and id
but it also has lat
and lon
coordinates.
The data variable is dimensioned by time
and id
and what I want to do is dimension it by time
, lat
, and lon
. For example:
import numpy
import xarray
ds = xarray.Dataset()
ds['data'] = (('time', 'id'), numpy.arange(0, 50).reshape((5, 10)))
ds.coords['time'] = (('time',), numpy.arange(0, 5))
ds.coords['id'] = (('id',), numpy.arange(0, 10))
ds.coords['lat'] = (('lat',), numpy.arange(10, 20))
ds.coords['lon'] = (('lon',), numpy.arange(20, 30))
print ds
Result:
<xarray.Dataset>
Dimensions: (id: 10, lat: 10, lon: 10, time: 5)
Coordinates:
* time (time) int64 0 1 2 3 4
* id (id) int64 0 1 2 3 4 5 6 7 8 9
* lat (lat) int64 10 11 12 13 14 15 16 17 18 19
* lon (lon) int64 20 21 22 23 24 25 26 27 28 29
Data variables:
data (time, id) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
The only way I can figure out how to accomplish this is to iterate over the indexes building out a new data array with the correct shape and dimensions:
reshaped_array = numpy.ma.masked_all((5, 10, 10))
for t_idx in range(0, 5):
for r_idx in range(0, 10):
reshaped_array[t_idx, r_idx, r_idx] = ds['data'][t_idx, r_idx]
ds['data2'] = (('time', 'lat', 'lon'), reshaped_array)
print ds
Result:
<xarray.Dataset>
Dimensions: (id: 10, lat: 10, lon: 10, time: 5)
Coordinates:
* time (time) int64 0 1 2 3 4
* id (id) int64 0 1 2 3 4 5 6 7 8 9
* lat (lat) int64 10 11 12 13 14 15 16 17 18 19
* lon (lon) int64 20 21 22 23 24 25 26 27 28 29
Data variables:
data (time, id) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
data2 (time, lat, lon) float64 0.0 nan nan nan nan nan nan nan nan ...
But this is very expensive, is there a better way? Basically at each 'time' slice I want a diagonal array that is filled with the values from the original data. It seems like I should be able to construct a view into the original data somehow to accomplish this but I'm at a loss as to how to do it.