9

我想同时在我自己的数据集上训练/评估 ssd_mobile_v1_coco Object Detection API

但是,当我只是尝试这样做时,我面临着 GPU 内存几乎已满,因此评估脚本无法启动。以下是我用于训练和评估的命令:
在一个终端窗格中调用训练脚本,如下所示:

python3 train.py \
        --logtostderr \
        --train_dir=training_ssd_mobile_caltech \
        --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config

运行良好,训练有效......然后我尝试在第二个终端窗格中运行评估脚本:

 python3 eval.py \
        --logtostderr \
        --checkpoint_dir=training_ssd_mobile_caltech \
        --eval_dir=eval_caltech \
        --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config 

它失败并出现以下错误:

python3 eval.py \
        --logtostderr \
        --checkpoint_dir=training_ssd_mobile_caltech \
        --eval_dir=eval_caltech \
       --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config 
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
2018-02-28 18:40:00.302271: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-02-28 18:40:00.412808: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:895] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-02-28 18:40:00.413217: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties: 
name: GeForce GTX 1080 major: 6 minor: 1 memoryClockRate(GHz): 1.835
pciBusID: 0000:01:00.0
totalMemory: 7.92GiB freeMemory: 93.00MiB
2018-02-28 18:40:00.413424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:01:00.0, compute capability: 6.1)
2018-02-28 18:40:00.957090: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 43.00M (45088768 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-02-28 18:40:00.957919: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 38.70M (40580096 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
INFO:tensorflow:Restoring parameters from training_ssd_mobile_caltech/model.ckpt-4775
INFO:tensorflow:Restoring parameters from training_ssd_mobile_caltech/model.ckpt-4775
2018-02-28 18:40:02.274830: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-02-28 18:40:02.278599: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-02-28 18:40:12.280515: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-02-28 18:40:12.281958: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-02-28 18:40:12.282082: W tensorflow/core/common_runtime/bfc_allocator.cc:273] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.75MiB.  Current allocation summary follows.
2018-02-28 18:40:12.282160: I tensorflow/core/common_runtime/bfc_allocator.cc:628] Bin (256):   Total Chunks: 190, Chunks in use: 190. 47.5KiB allocated for chunks. 47.5KiB in use in bin. 11.8KiB client-requested in use in bin.
2018-02-28 18:40:12.282251: I tensorflow/core/common_runtime/bfc_allocator.cc:628] Bin (512):   Total Chunks: 70, Chunks in use: 70. 35.0KiB allocated for chunks. 35.0KiB in use in bin. 35.0KiB client-requested in use in bin.
[.......................................]2018-02-28 18:40:12.290959: I tensorflow/core/common_runtime/bfc_allocator.cc:684] Sum Total of in-use chunks: 29.83MiB
2018-02-28 18:40:12.290971: I tensorflow/core/common_runtime/bfc_allocator.cc:686] Stats: 
Limit:                    45088768
InUse:                    31284736
MaxInUse:                 32368384
NumAllocs:                     808
MaxAllocSize:              5796864

2018-02-28 18:40:12.291022: W tensorflow/core/common_runtime/bfc_allocator.cc:277] **********************xx*********xx**_*__****______***********************************************xx
2018-02-28 18:40:12.291044: W tensorflow/core/framework/op_kernel.cc:1198] Resource exhausted: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
WARNING:root:The following classes have no ground truth examples: 1
/home/mm/models/research/object_detection/utils/metrics.py:144: RuntimeWarning: invalid value encountered in true_divide
  num_images_correctly_detected_per_class / num_gt_imgs_per_class)
/home/mm/models/research/object_detection/utils/object_detection_evaluation.py:710: RuntimeWarning: Mean of empty slice
  mean_ap = np.nanmean(self.average_precision_per_class)
/home/mm/models/research/object_detection/utils/object_detection_evaluation.py:711: RuntimeWarning: Mean of empty slice
  mean_corloc = np.nanmean(self.corloc_per_class)
Traceback (most recent call last):
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1350, in _do_call
    return fn(*args)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1329, in _run_fn
    status, run_metadata)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "eval.py", line 146, in <module>
    tf.app.run()
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 124, in run
    _sys.exit(main(argv))
  File "eval.py", line 142, in main
    FLAGS.checkpoint_dir, FLAGS.eval_dir)
  File "/home/mm/models/research/object_detection/evaluator.py", line 240, in evaluate
    save_graph_dir=(eval_dir if eval_config.save_graph else ''))
  File "/home/mm/models/research/object_detection/eval_util.py", line 407, in repeated_checkpoint_run
    save_graph_dir)
  File "/home/mm/models/research/object_detection/eval_util.py", line 286, in _run_checkpoint_once
    result_dict = batch_processor(tensor_dict, sess, batch, counters)
  File "/home/mm/models/research/object_detection/evaluator.py", line 183, in _process_batch
    result_dict = sess.run(tensor_dict)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 895, in run
    run_metadata_ptr)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1128, in _run
    feed_dict_tensor, options, run_metadata)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1344, in _do_run
    options, run_metadata)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1363, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.


Caused by op 'FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D', defined at:
  File "eval.py", line 146, in <module>
    tf.app.run()
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 124, in run
    _sys.exit(main(argv))
  File "eval.py", line 142, in main
    FLAGS.checkpoint_dir, FLAGS.eval_dir)
  File "/home/mm/models/research/object_detection/evaluator.py", line 161, in evaluate
    ignore_groundtruth=eval_config.ignore_groundtruth)
  File "/home/mm/models/research/object_detection/evaluator.py", line 72, in _extract_prediction_tensors
    prediction_dict = model.predict(preprocessed_image, true_image_shapes)
  File "/home/mm/models/research/object_detection/meta_architectures/ssd_meta_arch.py", line 334, in predict
    preprocessed_inputs)
  File "/home/mm/models/research/object_detection/models/ssd_mobilenet_v1_feature_extractor.py", line 112, in extract_features
    scope=scope)
  File "/home/mm/models/research/slim/nets/mobilenet_v1.py", line 232, in mobilenet_v1_base
    scope=end_point)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/framework/python/ops/arg_scope.py", line 182, in func_with_args
    return func(*args, **current_args)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/layers/python/layers/layers.py", line 1057, in convolution
    outputs = layer.apply(inputs)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/base.py", line 762, in apply
    return self.__call__(inputs, *args, **kwargs)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/base.py", line 652, in __call__
    outputs = self.call(inputs, *args, **kwargs)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/convolutional.py", line 167, in call
    outputs = self._convolution_op(inputs, self.kernel)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 838, in __call__
    return self.conv_op(inp, filter)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 502, in __call__
    return self.call(inp, filter)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 190, in __call__
    name=self.name)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 639, in conv2d
    data_format=data_format, dilations=dilations, name=name)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3160, in create_op
    op_def=op_def)
  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1625, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

在启动eval.pyTF 训练之前,预先分配了所有 GPU 内存,因此我无法弄清楚如何让它们同时运行,或者至少有 ODA,以特定间隔运行评估。

因此,首先是否有可能让评估与培训同时进行?如果是这样,它是如何完成的?

系统信息

您正在使用的模型的顶级目录是什么:object_detection

我是否编写了自定义代码:还没有...

操作系统平台和发行版:Linux Ubuntu 16.04 LTS

TensorFlow 安装自(源代码或二进制文件):pip3 tensorflow-gpu

TensorFlow 版本(使用下面的命令):1.5.0

CUDA/cuDNN 版本:9.0/7.0

GPU 型号和内存:GTX 1080、8Gb

4

2 回答 2

18

一种简单的方法是在命令之前添加 CUDA_VISIBILE_DEVICES

CUDA_VISIBLE_DEVICES="" python eval.py --logtostderr --pipeline_config_path=multires.config --checkpoint_dir=/train_dir/ --eval_dir=eval_dir/

这将阻止您的评估脚本看到任何 GPU,并且它应该自动回退到 CPU。

于 2018-04-26T23:36:45.647 回答
6

要强制 eval 作业在您的 CPU 上运行(并防止它占用宝贵的 GPU 内存),请创建一个 virtualenv 来安装用于训练的 tensorflow-gpu(命名为 virtual_tf_gpu),并在另一个地方安装 tensorflow 而无需gpu 支持(例如 virtual_tf)。在两个单独的终端窗口中激活您的两个 virtualenv,并在您的 GPU 支持的环境中开始训练并在您的 CPU 支持的环境中进行评估。

祝你好运!!!

于 2018-03-20T09:46:14.777 回答