10

根据https://stackoverflow.com/a/48981834/1840471,这是 Python 中加权基尼系数的实现:

import numpy as np
def gini(x, weights=None):
    if weights is None:
        weights = np.ones_like(x)
    # Calculate mean absolute deviation in two steps, for weights.
    count = np.multiply.outer(weights, weights)
    mad = np.abs(np.subtract.outer(x, x) * count).sum() / count.sum()
    rmad = mad / np.average(x, weights=weights)
    # Gini equals half the relative mean absolute deviation.
    return 0.5 * rmad

这很干净,适用于中型阵列,但正如其最初的建议 ( https://stackoverflow.com/a/39513799/1840471 ) 中所警告的那样,它是 O(n 2 )。在我的计算机上,这意味着它会在 ~20k 行后中断:

n = 20000  # Works, 30000 fails.
gini(np.random.rand(n), np.random.rand(n))

这可以调整为适用于更大的数据集吗?我的是~150k行。

4

2 回答 2

12

这是一个比您上面提供的版本快得多的版本,并且还为没有重量的情况使用了简化的公式,以便在这种情况下获得更快的结果。

def gini(x, w=None):
    # The rest of the code requires numpy arrays.
    x = np.asarray(x)
    if w is not None:
        w = np.asarray(w)
        sorted_indices = np.argsort(x)
        sorted_x = x[sorted_indices]
        sorted_w = w[sorted_indices]
        # Force float dtype to avoid overflows
        cumw = np.cumsum(sorted_w, dtype=float)
        cumxw = np.cumsum(sorted_x * sorted_w, dtype=float)
        return (np.sum(cumxw[1:] * cumw[:-1] - cumxw[:-1] * cumw[1:]) / 
                (cumxw[-1] * cumw[-1]))
    else:
        sorted_x = np.sort(x)
        n = len(x)
        cumx = np.cumsum(sorted_x, dtype=float)
        # The above formula, with all weights equal to 1 simplifies to:
        return (n + 1 - 2 * np.sum(cumx) / cumx[-1]) / n

下面是一些测试代码来检查我们得到(大部分)相同的结果:

>>> x = np.random.rand(1000000)
>>> w = np.random.rand(1000000)
>>> gini_max_ghenis(x, w)
0.33376310938610521
>>> gini(x, w)
0.33376310938610382

但速度却大不相同:

%timeit gini(x, w)
203 ms ± 3.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit gini_max_ghenis(x, w)
55.6 s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

如果从函数中删除 pandas 操作,它已经快得多了:

%timeit gini_max_ghenis_no_pandas_ops(x, w)
1.62 s ± 75 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

如果您想获得最后的性能下降,您可以使用 numba 或 cython,但这只会获得几个百分点,因为大部分时间都花在排序上。

%timeit ind = np.argsort(x); sx = x[ind]; sw = w[ind]
180 ms ± 4.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

编辑:gini_max_ghenis 是 Max Ghenis 回答中使用的代码

于 2018-03-30T08:43:22.667 回答
4

从这里调整StatsGiniR 函数:

import numpy as np
import pandas as pd

def gini(x, w=None):
    # Array indexing requires reset indexes.
    x = pd.Series(x).reset_index(drop=True)
    if w is None:
        w = np.ones_like(x)
    w = pd.Series(w).reset_index(drop=True)
    n = x.size
    wxsum = sum(w * x)
    wsum = sum(w)
    sxw = np.argsort(x)
    sx = x[sxw] * w[sxw]
    sw = w[sxw]
    pxi = np.cumsum(sx) / wxsum
    pci = np.cumsum(sw) / wsum
    g = 0.0
    for i in np.arange(1, n):
        g = g + pxi.iloc[i] * pci.iloc[i - 1] - pci.iloc[i] * pxi.iloc[i - 1]
    return g

这适用于大向量,至少多达 10M 行:

n = 1e7
gini(np.random.rand(n), np.random.rand(n))  # Takes ~15s.

它还产生与问题中提供的函数相同的结果,例如在此示例中给出 0.2553:

gini(np.array([3, 1, 6, 2, 1]), np.array([4, 2, 2, 10, 1]))
于 2018-02-27T01:35:59.710 回答