我是 Python 和 Tensorflow 的新手。我正在尝试从Tensorflow 对象检测 API运行对象检测教程文件,但是当检测到对象时,我找不到在哪里可以获得边界框的坐标。
相关代码:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
我假设绘制边界框的地方是这样的:
# Visualization of the results of detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
我试过打印output_dict['detection_boxes']
,但我不确定这些数字是什么意思。有很多。
array([[ 0.56213236, 0.2780568 , 0.91445708, 0.69120586],
[ 0.56261235, 0.86368728, 0.59286624, 0.8893863 ],
[ 0.57073039, 0.87096912, 0.61292225, 0.90354401],
[ 0.51422435, 0.78449738, 0.53994244, 0.79437423],
......
[ 0.32784131, 0.5461576 , 0.36972913, 0.56903434],
[ 0.03005961, 0.02714229, 0.47211722, 0.44683522],
[ 0.43143299, 0.09211366, 0.58121657, 0.3509962 ]], dtype=float32)
我找到了类似问题的答案,但我没有像他们那样有一个名为 box 的变量。我怎样才能得到坐标?