有人尝试在谷歌合作中使用 numba 吗?我只是不知道如何在这种环境中设置它。目前,我被错误困住了library nvvm not found
。
问问题
3345 次
3 回答
9
将此代码复制到单元格中。这个对我有用。
!apt-get install nvidia-cuda-toolkit
!pip3 install numba
import os
os.environ['NUMBAPRO_LIBDEVICE'] = "/usr/lib/nvidia-cuda-toolkit/libdevice"
os.environ['NUMBAPRO_NVVM'] = "/usr/lib/x86_64-linux-gnu/libnvvm.so"
from numba import cuda
import numpy as np
import time
@cuda.jit
def hello(data):
data[cuda.blockIdx.x, cuda.threadIdx.x] = cuda.blockIdx.x
numBlocks = 5
threadsPerBlock = 10
data = np.ones((numBlocks, threadsPerBlock), dtype=np.uint8)
hello[numBlocks, threadsPerBlock](data)
print(data)
于 2018-02-15T15:53:54.887 回答
3
我不必安装@Algis 建议的软件包,但是驱动程序的路径不同。所以我不得不做以下事情。
首先确定驱动程序的正确路径
!find / -iname 'libdevice'
!find / -iname 'libnvvm.so'
# Output:
# /usr/local/cuda-9.2/nvvm/lib64/libnvvm.so
# /usr/local/cuda-9.2/nvvm/libdevice
然后将路径设置为@Algis 描述的
import os
os.environ['NUMBAPRO_LIBDEVICE'] = "/usr/local/cuda-9.2/nvvm/libdevice"
os.environ['NUMBAPRO_NVVM'] = "/usr/local/cuda-9.2/nvvm/lib64/libnvvm.so"
于 2019-01-05T14:54:14.310 回答
1
如果你在 colab 笔记本的开头有这个块,你可以在一次简单的扫描中完成 @Stan 的工作(这也会随着 CUDA 的更新而自动更新)
import os
dev_lib_path = !find / -iname 'libdevice'
nvvm_lib_path = !find / -iname 'libnvvm.so'
assert len(dev_lib_path)>0, "Device Lib Missing"
assert len(nvvm_lib_path)>0, "NVVM Missing"
os.environ['NUMBAPRO_LIBDEVICE'] = dev_lib_path[0]
os.environ['NUMBAPRO_NVVM'] = nvvm_lib_path[0]
于 2019-09-02T14:47:55.427 回答