我有一个看起来像这样的 DataFrame(请参阅此处的底部以获取重现它的代码):
date id_ val
0 2017-01-08 a; b 9.3
1 2017-01-07 a; b; c 7.9
2 2017-01-07 a 7.3
3 2017-01-06 b 9.0
4 2017-01-06 c 8.1
5 2017-01-05 c 7.4
6 2017-01-05 d 7.1
7 2017-01-05 a 7.0
8 2017-01-04 b; a 7.7
9 2017-01-04 c; a 5.3
10 2017-01-04 a; c 8.0
我想按单个(分号分隔)元素进行分组,id_
并计算val
最多但不包括每个日期的累积平均值。这应该为 any 的第一次出现提供 NaN id_
,然后我将填充一些任意值(此处为 6.0)。
输出:
id_
a 0 6.0000
1 9.3000
2 8.6000
7 8.1667
8 7.8750
9 7.8400
10 7.4167
b 0 6.0000
1 9.3000
3 8.6000
8 8.7333
c 1 6.0000 # fill value
4 7.9000 # first actual occurrence of id_='c'
5 8.0000 # cumulative mean of the first two 'c'
9 7.8000
10 7.1750
d 6 6.0000
Name: val, dtype: float64
这是我目前的流程,很慢——可以改进吗?其次,我可以date
在最终结果中保持 col 吗?
# seems like `pd.melt` might be more direct here
df.sort_values('date', inplace=True)
stacked = df.id_.str.split('; ', expand=True).stack()
stacked.index = stacked.index.droplevel(1)
stacked = stacked.to_frame()\
.merge(df, left_index=True, right_index=True)\
.drop('id_', axis=1)\
.rename({0: 'id_'}, axis=1)
def trend_scorer(s: pd.Series, fillvalue=6.):
return s['val'].expanding().mean().shift(1).fillna(fillvalue)
stacked.groupby('id_').apply(trend_scorer)
数据框创建:
import pandas as pd
data = \
{'id_': {0: 'a; b',
1: 'a; b; c',
2: 'a',
3: 'b',
4: 'c',
5: 'c',
6: 'd',
7: 'a',
8: 'b; a',
9: 'c; a',
10: 'a; c'},
'date': {0: '1/8/17',
1: '1/7/17',
2: '1/7/17',
3: '1/6/17',
4: '1/6/17',
5: '1/5/17',
6: '1/5/17',
7: '1/5/17',
8: '1/4/17',
9: '1/4/17',
10: '1/4/17'},
'val': {0: 9.3,
1: 7.9,
2: 7.3,
3: 9.0,
4: 8.1,
5: 7.4,
6: 7.1,
7: 7.0,
8: 7.7,
9: 5.3,
10: 8.0}}
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)