我使用lapack
和blas
库来实现矩阵求逆和矩阵乘法cython
。这是我的代码:
import numpy as np
cimport numpy as np
cimport cython
import ctypes
cdef extern from "f2pyptr.h":
void *f2py_pointer(object) except NULL
import scipy.linalg.lapack
import scipy.linalg.blas
ctypedef np.float64_t REAL_t
ctypedef void (*dgetri_ptr) (long *N, double *A, long *LDA, long *IPIV, double *WORK, long *LWORK, long *INFO) nogil
cdef dgetri_ptr dgetri = <dgetri_ptr>f2py_pointer(scipy.linalg.lapack.dgetri._cpointer)
ctypedef void (*dgetrf_ptr) (long *M, long *N, double *A, long *LDA, long *IPIV, long *INFO) nogil
cdef dgetrf_ptr dgetrf = <dgetrf_ptr>f2py_pointer(scipy.linalg.lapack.dgetrf._cpointer)
cdef void inverse_matrix(REAL_t* A, long n, long info):
#Computes the inverse of an LU-factored general matrix using sgetri routine.
#This routine computes the inverse inv(A) of a general matrix A. Before calling this routine, call sgetrf to factorize A
cdef np.ndarray[long, ndim=1] ipiv = np.empty(n, dtype=np.int64)
cdef np.ndarray[double, ndim=1] work = np.empty(n, dtype=np.float64)
dgetrf(&n, &n, A, &n, &ipiv[0], &info)
dgetri(&n, A, &n, &ipiv[0], &work[0], &n, &info)
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef REAL_t[::1,:] inverse(REAL_t[::1,:] A):
if (A.shape[0] !=A.shape[1]):
raise TypeError("The input array must be a square matrix")
cdef long N = A.shape[0]
cdef long info
A=np.require(A, requirements=['F'])
inverse_matrix(&A[0,0], N, info)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal getrf' % -info)
elif info > 0:
raise ValueError("Diagonal number %d is exactly zero. Singular matrix." % -info)
return A
ctypedef void (*dgetri_ptr) (long *N, double *A, long *LDA, long *IPIV, double *WORK, long *LWORK, long *INFO) nogil
cdef dgetri_ptr dgetri = <dgetri_ptr>f2py_pointer(scipy.linalg.lapack.dgetri._cpointer)
ctypedef void (*dgemm_ptr) (char *TRANSA, char *TRANSB, long *M, long *N, long *K, double *ALPHA, double *A, long *LDA, double *B, long *LDB, double *BETA, double *C, long *LDC) nogil
cdef dgemm_ptr dgemm = <dgemm_ptr>f2py_pointer(scipy.linalg.blas.dgemm._cpointer)
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef REAL_t[::1,:] dot_product(REAL_t[::1,:] a, REAL_t[::1,:] b, char* TRANSA ='N', char* TRANSB='N', REAL_t ALPHA = 1.0, REAL_t BETA = 0.0):
cdef REAL_t[::1,:] c_view = np.zeros((a.shape[0], b.shape[1]), dtype=np.float64, order='F')
cdef long M, N, K, LDA, LDB, LDC
cdef char* cN = 'N'
cdef char* cT = 'T'
if (a.shape[1] !=b.shape[0]):
raise TypeError("The numbers of columns in matrix a must be equal to number of rows in matrix b")
if (TRANSA == cN):
M = a.shape[0] #the number of rows of the matrix op( A ) and of the matrix C
elif (TRANSA == cT):
M = a.shape[1]
if (TRANSB == cN):
N = b.shape[1]
elif (TRANSB == cT):
N = b.shape[0]
K = a.shape[1]
LDA = a.shape[0]
LDB = b.shape[0]
LDC = a.shape[0]
dgemm(TRANSA, TRANSB, &M, &N, &K, &ALPHA, &a[0,0], &LDA, &b[0,0], &LDB, &BETA, &c_view[0,0], &LDC)
return c_view
我想通过拆分计算并在多个处理器上运行它们来提高我的代码速度。如何通过在我的代码中包装以下函数来扩展此代码并使用scalapackcython
库:
更新一:
为了能够使用pdgetri
或者pdgetrf
我应该使用以下方法将它们从他们的fortran脚本和cpdgemm_
脚本中包装起来?
scalapack_wrap.f90
subroutine C_PDGETRI( N, A, IA, JA, DESCA, IPIV, WORK, LWORK, IWORK, LIWORK, INFO ) bind(c, NAME='C_PDGETRI')
use iso_c_binding, only: c_double, c_int
implicit none
real(c_double), dimension(N, N), intent(in):: A
real(c_double), dimension(LWORK), intent(in):: WORK
integer(c_int), dimension(N), intent(in):: DESCA
integer(c_int), dimension(N), intent(in)::IPIV
integer(c_int), dimension(LWORK), intent(in):: IWORK
integer(c_int), intent(in) :: N, IA, JA, LIWORK, LWORK, INFO
call PDGETRI( N, A, IA, JA, DESCA, IPIV, WORK, LWORK, IWORK, LIWORK, INFO )
end subroutine C_PDGETRI
subroutine C_PDGETRF(M, N, A, IA, JA, DESCA, IPIV, INFO) bind(c, NAME='C_PDGETRF')
use iso_c_binding, only: c_double, c_int
implicit none
real(c_double), dimension(M, N), intent(in):: A
integer(c_int), dimension(N), intent(in):: DESCA
integer(c_int), dimension(N), intent(in)::IPIV
integer(c_int), intent(in) :: M, N, IA, JA, INFO
call PDGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )
end subroutine C_PDGETRF
scalapack_func.h
extern void C_PDGETRI( long* N, double* A, int* IA, int* JA, int* DESCA, int* IPIV, double* WORK, long* LWORK, int* IWORK, long* LIWORK, int* INFO );
extern void C_PDGETRF( long* M, long* N, double* A, int* IA, int* JA, int* DESCA, int* IPIV, int* INFO);
scalapack_funcs.pyx
import numpy as np
cimport numpy as np
cimport cython
cdef extern from "scalapack_func.h":
void C_PDGETRI( long* N, double* A, int* IA, int* JA, int* DESCA, int* IPIV, double* WORK, long* LWORK, int* IWORK, long* LIWORK, int* INFO);
void C_PDGETRF( long* M, long* N, double* A, int* IA, int* JA, int* DESCA, int* IPIV, int* INFO);
cdef double[:,::1] pdgetri_(double[:,::1] A):
cdef long N = A.shape[0]
cdef long LWORK = A.shape[1]
cdef long LIWORK = A.shape[1]
cdef int INFO = 0
cdef int IA = 0 #the row index in the global array A indicating the first row of sub( A )
cdef int JA = 0 #The column index in the global array A indicating the first column of sub( A ).
cdef double[::1] WORK = np.empty(LWORK, dtype=np.float64)
cdef int[::1] IWORK = np.empty(LIWORK, dtype=np.int32)
cdef int[::1] IPIV = np.empty(N, dtype=np.int32)
cdef int[::1] DESCA = np.empty(N, dtype=np.int32)
C_PDGETRI(&N, &A[0,0], &IA, &JA, &DESCA[0], &IPIV[0], &WORK[0], &LWORK, &IWORK[0], &LIWORK, &INFO)
if INFO < 0:
raise ValueError('illegal value in %d-th argument of internal pdgetri' % -INFO)
elif INFO > 0:
raise ValueError("Diagonal number %d is exactly zero. Singular matrix." % -INFO)
return A
cdef double[:,::1] pdgetrf_(double[:,::1] A):
cdef long M = A.shape[0] #The number of rows to be operated on,
cdef long N = A.shape[1] #The number of columns to be operated on
cdef int INFO = 0
cdef int IA = 0 #the row index in the global array A indicating the first row of sub( A )
cdef int JA = 0 #The column index in the global array A indicating the first column of sub( A ).
cdef int[::1] IPIV = np.empty(M, dtype=np.int32)
cdef int[::1] DESCA = np.empty(M, dtype=np.int32)
C_PDGETRF(&M, &N, &A[0,0], &IA, &JA, &DESCA[0], &IPIV[0], &INFO)
if INFO < 0:
raise ValueError('illegal value in %d-th argument of internal pdgetrf' % -INFO)
elif INFO > 0:
raise ValueError("Diagonal number %d is exactly zero. Singular matrix." % -INFO)
return A
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef double[:,::1] inverse(double[:,::1] A):
if (A.shape[0] !=A.shape[1]):
raise TypeError("The input array must be a square matrix")
A=np.require(A, requirements=['F'])
pdgetrf_(A)
pdgetri_(A)
return A
更新二:
安装程序.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
# This line only needed if building with NumPy in Cython file.
from numpy import get_include
import subprocess
import os
from os import system
import warnings
import mpi4py
fortran_mod_comp = 'mpif90 /usr/local/scalapack-2.0.2/SRC/pdgetri.f -c -o pdgetri_.o -O3 -fPIC'
print fortran_mod_comp
system(fortran_mod_comp)
fortran_mod_comp = 'mpif90 /usr/local/scalapack-2.0.2/SRC/pdgetrf.f -c -o pdgetrf_.o -O3 -fPIC'
print fortran_mod_comp
system(fortran_mod_comp)
shared_obj_comp = 'mpif90 scalapack_wrap.f90 -c -o scalapack_wrap.o -O3 -fPIC'
print shared_obj_comp
system(shared_obj_comp)
def runcommand(cmd):
process = subprocess.Popen(cmd.split(), shell=False, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, universal_newlines=True)
c = process.communicate()
if process.returncode != 0:
raise Exception("Something went wrong whilst running the command: %s" % cmd)
return c[0]
def whichscalapack():
# Figure out which Scalapack to use
if 'MKLROOT' in os.environ:
return 'intelmkl'
else:
return 'netlib'
def whichmpi():
# Figure out which MPI environment this is
import re
try:
mpiv = runcommand('mpirun -V')
if re.search('Intel', mpiv):
return 'intelmpi'
elif re.search('Open MPI', mpiv):
return 'openmpi'
except:
return 'mpich'
warnings.warn('Unknown MPI environment.')
return None
scalapackversion = whichscalapack()
mpiversion = whichmpi()
if mpiversion == 'openmpi':
# Fetch the arguments for linking and compiling.
mpilinkargs = runcommand('mpicc -showme:link').split()
mpicompileargs = runcommand('mpicc -showme:compile').split()
if scalapackversion == 'intelmkl':
# Set library includes (taking into account which MPI library we are using)."
scl_lib = ['mkl_scalapack_lp64', 'mkl_rt', 'mkl_blacs_'+mpiversion+'_lp64', 'iomp5', 'pthread']
scl_libdir = [os.environ['MKLROOT']+'/lib/intel64' if 'MKLROOT' in os.environ else '']
elif scalapackversion == 'netlib':
scl_lib = ['scalapack', 'gfortran']
scl_libdir = [ os.path.dirname(runcommand('gfortran -print-file-name=libgfortran.a')) ]
else:
raise Exception("Scalapack distribution unsupported. Please modify setup.py manually.")
ext_modules = [Extension(# module name:
'scalapack_funcs',
# source file:
sources=['scalapack_funcs.pyx'],
# Needed if building with NumPy. This includes the NumPy headers when compiling.
include_dirs = [get_include(), mpi4py.get_include()],
#include libraries
library_dirs=scl_libdir, libraries=scl_lib,
#libraries=["scalapack"],
#library_dirs=[library_dirs],
# other compile args for gcc
extra_compile_args=[ "-fopenmp", "-lmkl_lapack95_lp64", "-lmkl_core", "-lmkl_intel_lp64", "-lmkl_rt", "-lmkl_intel_thread" ] + mpicompileargs,
# other files to link to
extra_link_args=['pdgetrf_.o', 'pdgetri_.o', 'scalapack_wrap.o','-fopenmp', "-lmkl_lapack95_lp64", "-lmkl_core", "-lmkl_intel_lp64", "-lmkl_rt", "-lmkl_intel_thread"] + mpilinkargs)]
setup(
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
代码被编译但是
>>> import scalapack_funcs
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: /opt/intel/mkl/lib/intel64/libmkl_scalapack_lp64.so: undefined symbol: dapply_2hv
正如danny指出的那样,问题可能只是使用scalapack
库正确编译代码。但我仍然收到上述错误消息。任何建议如何摆脱它?