1

我正在使用 tensorflow GRU 单元来实现 RNN。我将上述视频与最长 5 分钟的视频一起使用。因此,由于下一个状态是自动输入到 GRU 中的,如何在每个 epoch 之后手动重置 RNN 的状态。换句话说,我希望训练开始时的初始状态始终为 0。这是我的代码片段:

with tf.variable_scope('GRU'):
    latent_var = tf.reshape(latent_var, shape=[batch_size, time_steps, latent_dim])

    cell = tf.nn.rnn_cell.GRUCell(cell_size)   
    H, C = tf.nn.dynamic_rnn(cell, latent_var, dtype=tf.float32)  
    H = tf.reshape(H, [batch_size, cell_size]) 
....

任何帮助深表感谢!

4

1 回答 1

1

使用initial_state的参数tf.nn.dynamic_rnn

initial_state:(可选)RNN 的初始状态。如果 cell.state_size是整数,则这必须是适当类型和形状的张量[batch_size, cell.state_size]。如果cell.state_size 是一个元组,这应该是一个具有形状的张量元组[batch_size, s] for s in cell.state_size

文档中的一个改编示例:

# create a GRUCell
cell = tf.nn.rnn_cell.GRUCell(cell_size)

# 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]

# defining initial state
initial_state = cell.zero_state(batch_size, dtype=tf.float32)

# 'state' is a tensor of shape [batch_size, cell_state_size]
outputs, state = tf.nn.dynamic_rnn(cell, input_data,
                                   initial_state=initial_state,
                                   dtype=tf.float32)

另请注意,尽管initial_state不是占位符,但您也可以将值提供给它。因此,如果希望在一个纪元内保留状态,但在纪元开始时从零开始,您可以这样做:

# Compute the zero state array of the right shape once
zero_state = sess.run(initial_state)

# Start with a zero vector and update it 
cur_state = zero_state
for batch in get_batches():
  cur_state, _ = sess.run([state, ...], feed_dict={initial_state=cur_state, ...})
于 2018-01-30T20:15:51.990 回答